DATA SUPPLEMENT

Identification and validation of expressed HLA-binding breast cancer neoepitopes for potential use in individualized cancer therapy

Hannah Reimann, Andrew Nguyen, J. Zachary Sanborn, Charles J. Vaske, Stephen C. Benz, Kayvan Niazi, Shahrooz Rabizadeh, Patricia Spilman, Andreas Mackensen, Matthias Ruebner, Alexander Hein, Matthias W. Beckmann, Edith D. van der Meijden, Judith Bausenwein, Sascha Kretschmann, Marieke Griffioen, Jeffrey Schlom, James L. Gulley, Karin L. Lee, Duane H. Hamilton, Patrick Soon-Shiong, Peter A. Fasching, Anita N. Kremer

METHODS

In vitro peptide HLA-A2 binding assay

For the determination of the *in vitro* HLA-A2 binding affinity of synthesized peptides, T2A2 cells were cultured with 50 μ g/mL of the indicated peptides overnight at 37°C. The binding of exogenous peptide stabilizes the HLA-A2 complex on the surface of the TAP-deficient T2A2 cells. The affinity of the peptide to bind the HLA-A2 molecule is assessed via flow cytometry as function of increased HLA-A2 mean fluorescent intensity. FITC-labeled anti-HLA antibodies were purchased from One Lamda, and data was acquired using a FACS Calibur Flow cytometer (BD Biosciences).

In vitro generation of neoepitope-specific T cells from healthy donors

Peripheral blood from healthy donors was obtained under the appropriate Institutional Review Board (IRB) approval and with informed consent. Neoepitope-specific T cells were generated from HLA-A2 expressing healthy donor peripheral blood mononuclear cells (PBMCs) using three rounds of in vitro stimulation. For each round of stimulation, dendritic cells (DCs) were prepared from PBMCs by plating 2 x 10⁷ cells/well in 6-well plates in AIM V medium (Invitrogen). Cells were allowed to adhere for 2 to 4 hours at 37°C. Following incubation, non-adherent cells were removed, and remaining cells were washed once with PBS and incubated in AIM V media containing 100 ng/mL granulocyte-macrophage colony-stimulating factor (GM-CSF; Peprotech) and 20 ng/mL interleukin-4 (IL-4; Peprotech). Cytokine-containing media was changed every 48 hours for 5 days. On day 5, DCs were matured for 1 to 2 days with CD40L (0.5 µg/mL; Enzo Life Sciences) in the presence of a cross-linking enhancer (1 µg/mL). After maturation, DCs were peptide-pulsed with MDA-MB-231 derived 9-mer neoepitopes (20 µg/mL) in RPMI media containing 10% (v/v) human AB serum for 1 hour. For the first round of in vitro stimulation, 2 x 10⁶ autologous PBMCs were added per well following peptide incubation. After 48 hours, 100 ng/mL each of IL-15 (Peprotech) and IL-7 (Peprotech) were added to each well and cytokines were replenished every 2 to 3 days for 7 days. For subsequent rounds of *in vitro* stimulation, DCs were peptide pulsed for 1 hour as described above. T cells were harvested from the previous round of in vitro stimulation, counted, and added to new DCs in 2 mL media. IL-15 and IL-7 were added to media

every 2 days. Following the third round of *in vitro* stimulation, CD8+ T cells were isolated using a negative selection (Miltenyi Biotec). Purified CD8 cells rested in media containing IL-15 and IL-7 prior to assessment of either their cytotoxicity or antigendependent IFN- γ secretion.

Neoepitope prediction for two TILGen subjects

Preclinical validation of neoepitope prediction in BC patients

From two TILGen study^{1,2} patients, peripheral blood and tumor tissue were obtained after approval by the internal Institutional Review Board (IRB) and with informed patient consent according to the Declaration of Helsinki. Briefly, the TILGen (TILs and genomics) study was a predefined substudy of the iMODE-B (imaging and molecular detection of breast cancer) study. iMODE-B is concerned with molecular markers at the time of breast cancer diagnosis or progression, molecular detection, and imaging detection of breast cancer. The TILGen study focused on the identification of antigenspecific TILs in TNBC and HER2-positive breast cancer patients in order to identify immunogenic targets that could help to improve cancer immunotherapy. Patients were eligible for inclusion in the iMODE-B study if an indication existed for a diagnostic biopsy because of a suspicious breast lesion.^{1,2} Peripheral blood was obtained for the isolation of germline DNA and generation of antigen-presenting cells (APC) (Epstein-Barr Virus (EBV)-transformed B cells and monocyte-derived DCs). Tumor material was obtained by ultrasound guided needle-core biopsy for DNA extraction and expansion of TILs. One patient with HER2+ BC (TILGen 1) and another with TNBC (TILGen 2) were the initial patients tested for neoantigen-reactivity. Both received neoadjuvant chemotherapy according to standard of care and had pathological complete responses. For patient 1, resected tissue from the primary breast tumor site after neoadjuvant chemotherapy was available in addition to the initial biopsy and underwent analysis.

Generation of autologous dendritic cells (DCs)

DCs of the two breast cancer patients were generated from monocytes isolated from autologous PBMCs by magnetic separation as described in the Data Supplement. Monocytes (1 x 106 /mL RPMI) were incubated with 560 U/mL GM-CSF(Miltenyi Biotech) and 500 U/mL IL-4 (Peprotech). On day 5, 200 U/mL TNF α , 2000 U/mL IL-1 β , 1600 U/mL IL-6, 560 U/mL GM-CSF, 500 U/mL IFN- γ (all Miltenyi Biotech) and 1 µg/ml PGE-2 (Enzo) were added. DCs were harvested on day 6 to 7 and subsequently used for stimulation.

Peptide pulsing of stimulator cells

Before pulsing, peptides were dissolved in DMSO and diluted in RPMI. Peptide pulsing was performed by incubating stimulator cells for 2 hours with synthetic peptides (1 μ g/mL or as indicated) in RPMI containing 2% human serum. Peptide-pulsed cells were washed and subsequently used as stimulator cells. Alternatively, MCF-7 cells (5 x 10⁶ / ml RPMI) were lysed in three subsequent freeze-thawing cycles (liquid nitrogen to 37°C)

followed by loading of 100 μ L of those cell lysates onto EBV-LCLs. T-cell activation was measured either as cytokine release by IFN- γ ELISA (Invitrogen) according to the manufacturer's instructions or as upregulation of CD137 in flow cytometry. For blocking experiments, HLA class I (W6/32; Biolegend) and HLA class II (PdV5.2; Santa Cruz Biotechnology) blocking antibodies were added at 2 μ g/mL to the co-culture 30 minutes before addition of the T-cell clone.

Retroviral transduction of BC-derived neoantigens and HLA alleles

To confirm processing and presentation of neoantigens when endogenously expressed, total RNA from patient-derived EBV-LCLs was obtained using RNeasy Mini columns (Qiagen) and transcribed into cDNA by reverse transcriptase using the One Taq RT-PCR Kit (New England Biolabs, Germany). HLA restriction molecules and RBMX, PNMAL1 and CARS2 wildtype (wt) were amplified with specific primers and PNMAL1 P100R, CARS2 Q171H and RBMX T55I were generated by a 2-step PCR with oligos encoding the single nucleotide mutation (see all oligos and plasmids in Table S4). HLA-DQ and -DP α - and β - chains were fused by a T2A linker. PCR products were cloned into retroviral vector MP71 or pLZRS, including the marker genes Δ NGFR or GFP. Inserted PCR products were verified by sequencing. Wild-type ϕ nx A packaging cells were transfected with these vectors as described previously. ³ Viral supernatants were used for transduction of EBV-LCL, class II negative HeLa or MCF-7 cells on plates coated with 30 µg/ml recombinant human fibronectin CH296 (RetroNectin;Takara Bio). Expression of the transgenes was verified by marker gene expression and/or surface expression of HLA class II alleles.

Flow cytometry

For flow cytometric analysis and/or isolation of cells, the following antibodies were used: CD3 labelled with FITC or BV (Brilliant Violet) 510, APC-Cy7 or APC-labeled CD8, BV421-labelled CD4, PE-labelled CD137 and NGFR (all BD Sciences), as well as PElabelled HLA-DP (Leinco). IFN- γ producing cells were PE-labelled by using the cytokine secretion assay (Miltenyl Biotech) followed by flow cytometric sorting (Aria II, BD). The IOTest Beta Mark TCR V β Repertoire Kit (Beckman Coulter), which enables the identification of 24 different specificities, was used to determine the T-Cell Receptor (TCR) variable beta chain of different T-cell clones.

TCR sequencing and clonotypic PCR

For TCR sequencing, RNA of T-cell clones was isolated using an RNeasy mini kit according to the manufacturer's protocol, including QIA shredder and DNase digestion (all Qiagen). cDNA was generated using SMARTScribe Reverse Transcriptase (Clontech) and 1 μ M dNTPs (Roche) with an oligo in the constant β chain region (5'-CAGTATCTGGAGTCATTGA-3') and a target switching RNA anchor with added ribosomal guanine residues (5'-AAGCAGTGGTATCAACGCAGAGTACggg-3') as described previously. ⁴ In a second PCR step, amplification of the variable region was performed by using the Pwo SuperYield DNA Polymerase (Roche) according to the

manufacturer's instructions. Oligos included an anchor specific primer (5'-AAGCAGTGGTATCAACGCAGAGT-3') used in combination with a more proximal primer within the constant region (5'-CACGTGGTCGGGGWAGAAGC-3'). PCR was performed with 33 cycles, an annealing temperature of 59°C, and 1 minute of extension time. Resulting PCR bands were purified via gel electrophoresis, excised, and sequenced. Sequencing was performed using 5 μ L of DNA (100 ng/ μ L) mixed with 5 μ L of the respective primer followed by Sanger sequencing at GATC Biotech (Germany). Analysis of the resulting sequences was performed using the International Immunogenetics Information Systems. ⁵

For clonotypic PCR, forward primers were designed to bind in the highly variable CDR3 region, while reverse primers bound in a distance of 70 to 120 bp. The following primers were used: 3E1 fw: 5'-CAATGGCTACAATGTCTCCAGATTAA-3', 3E1 rv: 5'-AGGCACTGCTGGCACAGA-3'; E15 fw: 5'-TCAGGGCGCCAGTTCTCTAA-3', E15 rv: 5'-CCTAAGCTGCTGGCGCAAA-3'; G44 fw: 5'-CAGGAATGCCAAAGGAACGATT-3', G44 rv: 5'-CTGGTGAGCTGGCACAGAA-3'; 1A35 fw: 5'-ATCCGTCTCCACTCTGAAGATC-3', rv: 5'-TTCAGTGTTGCTCCCTAAGCT-3'. PCR was done in 10 μ L reaction mix containing 100 ng of cDNA with 100 nM of each primer and 5 μ L of the SYBR Select Master Mix (Thermo Scientific). Amplification was performed with 2 minutes at 50°C, 2 minutes at 95°C, followed by 65 cycles of 3 seconds at 95°C, 30 seconds at 59°C. β -Actin was used as a housekeeping gene: fw: 5'-CCGAGGACTTTGATTGCACA-3', rv: 5'-AGTGGGGTGGCTTTTAGGAT-3'. To verify specific amplification of qPCR products, they were Sanger sequenced using the described primers.

Immunoblotting

Cells (5 × 10⁶ cells/sample) were lysed on ice in 70 µL RIPA buffer (50 mM Tris, 150 mM NaCl, 1% Triton X-100, 50 mM NaF, 0,2 mM Na3VO4, pH 7.4) supplemented with protease inhibitors (Roche) for 30 minutes. Cytosolic proteins were isolated from supernatants after centrifugation at 16.000 x g (20 min, 4°C) and protein concentration was determined by Pierce BCA Protein Assay Kits (Thermo Fischer Scientific). Protein lysate (15 µg) was separated by SDS-PAGE for 1 hour at 120 V using precast Mini-PROTEAN TGX 4–15% gradient gels (Bio-Rad) and blotted on 0.2 µm Trans-Blot Turbo polyvinylidene difluoride membranes (Bio-Rad). Proteins were detected by rabbit anti-CARS2 antibody (Sigma-Aldrich), mouse IgG1 anti β-Aktin (Santa Cruz), and visualized by the WesternDot 625 goat anti-rabbit Western blot kit according to the manufacturer's protocol (Life Technologies).

Table S1. HLA-A2 restricted neoepitopes identified in the MDA-MB-231 cell line. Highlighted rows indicate the 20 peptides that were synthesized for further *in vitro* analysis.

Gene Name	Transcripts per million	Affinity (nM)	Necepitope	
RTTN	6.42	6	GLQDCLHSV	
PIGO 18.88		7	LLIAHFLGV	
SLC17A5 29.48		9	GTIGIFWFV	
MUC4	3.92	15	LLVTSLSSV	
ENTPD7	4.57	23	FLRQWVAFL	
PITPNM2	7.14	25	NVFDTVMHV	
ARFGAP1	48.51	27	SLLPHKHVV	
KIF13B	8.47	28	TLTHILYDV	
RTN4	422.86	31	AMAKIQAKV	
ZNF703	50.98	34	LLNPHTLGL	
NCAPD3	39.7	34	YLEYGLHAA	
RANBP2	35.47	35	FLTNDETKV	
ADGRG6	29.04	35	SLQGLFILI	
HAUS3	17.76	39	SLVQHQLAV	
SLC17A5	29.48	42	GIFWFVLWI	
DNAH14	10.31	45	ILIQELEEI	
YIPF1	19.35	64	AMLVFAIAI	
IDUA	7.58	80	LLSNDNALL	
PRR16	5.21	84	SVHHYAWVV	
RFX2	4.45	93	SMVGITMDI	
ZCCHC7	17.23	96	NLVGYENSV	
KMT2C	17.49	98	QMYHYSCAA	
TCF25	38.79	99	ILCEIKEAV	
ATP13A1	36.77	105	ALASCHLLM	
COMMD8	26.81	116	ALSSDTIAA	
MUC4	3.92 12.99	129	LLVTNASSV	
DYM		130 150	RLLQSGAEL	
PIGO	18.88		TMDSGEWDL	
ATP11A	20.46	173	HMQDYGLII	
SLC17A5	29.48	175	WFVLWIWLV	
C10orf88	8.52	187	HIDDNIALL	
ADAM8	87.28	191	GLLGDSEEA	
IDUA	7.58	198	ALLSNDNAL	
HERC2	12.92	218	LLLLQLWYS	
ENTPD7	4.57	218	RQWVAFLGL	
RTN4	422.86	271	KIQAKVPGL	
SLC17A5	29.48	288	ILLSLRNQL	
TLN1	208.07	290	KQAAHTLEA	
PRDM2	12.1	320	KIQDIQLKI	
USP5	53.58	360	GLGGLPNIV	
COMMD8	26.81	365	KLALSSDTI	
GTF3C1	29.64	385	FIGRPWHVV	
PANK2	26.55	410	RLLLRMGGV	
PITPNM2	7.14	415	VMHVHYPSA	
DPY19L4	14.75	428	KLIASILYQ	
ASPM	40.59	430	MLKPSTLII	
SLC18A2	5.14	433	FANMGIATL	
YIPF1	19.35	445	WICAMLVFA	
DPY19L4	14.75	464	QQMSLYPKL	
RFC1	30.26	468	KQNWRLLPA	

19

20

ANAPC1

p.T416M

CIDHLWTEM

WTEMITNIR

Table S2. All peptides used for screening T-cell reactivities in HER2+ TILGen patient 1
are shown. For HLA class I, all predicted neoepitopes were used as 9-mer peptides. For
HLA class II, fusion peptides were generated for each mutation predicted to bind.

No.	Gene	Mutation	Sequence	HLA class	No.	Gene	Mutation	Sequence	HLA class
1	RBMX	p.T55I	SRGFAFVIF	I	21	CDK20	p.I135M	DLKPANLLMSASGQLKIADFG	II
2	RAB1B	p.L186V	RPNVKIDST	I	22	SLCO2B1	p.R369C	QFIKVFPRVLLQTLCHPIFLLVVLSQVC	II
3	GOLGA3	p.H1486Tfs* 35	PRGDPQRTV	I	23	ABAT	p.R450Q	DSIQNKLILIARNKGVVL	II
4	PARP9	p.G383V	LVTKVFNLF	I	24	RRN3	p.S199L	TCHRALQIIARYVPLTPWFLMPILVEKFP	II
5	BAIAP2	p.N339K	DSYSKTLPV	I	25	FAM204A	p.D141E	WKELTQYFGVNDRFEP	II
6	PTHLH	p.D99del	FGSDEGRYL	I	26	SLC1A4	p.A516F	EETSPLVTHQNPFGPVAS	II
7			NPFGPVASA	I	27	PARP9	p.G383V	AKQFQRSQLVLVTKVFNLFCKYIYHVLWH	II
8	SLC1A4	p.A516F	PLVTHQNPF	I	28	RBMX	p.T551	DRETNKSRGFAFVIFESPADAKDAA	II
9	DOK7	p.S56R	LRERSRLTL	I					
10	HELLS	p.H535R	EREKNMRSF	I					
11			RYVPLTPWF	I					
12	1		VPLTPWFLM	I					
13	RRN3	p.S199L	ARYVPLTPW	I					
14	1		YVPLTPWFL	I					
15			LLMSASGQL	I					
16	CDK20	p.1135M	MSASGQLKI	I					
17	1		KPANLLMSA	I					
18			LWTEMITNI	I					

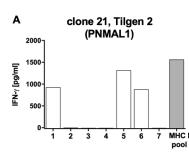
Ι

Table S3. All peptides used for screening T-cell reactivities in TNBC TILGen patient 2 are shown. For HLA class I (left), all predicted neoepitopes were used as 9-mer peptides. For HLA class II (right), fusion peptides were generated for each mutation predicted to bind.

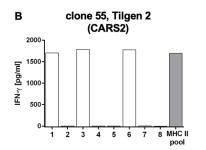
No.	Gene	Mutation	Sequence	HLA class	No.	Gene	Mutation	Sequence	HLA class
1	HEBP2	p.F142S	RSSDGFSSA	I	27	DCUN1D2	p.D150A	LKATAKFKDFYQFTFTF	II
2	DCUN1D2	p.D150A	ATAKFKDFY	I	28	SLC30A5	p.M748I	SGLSTGFHDVLAITKQMESMK	II
3		(1-0) (STATE TO A STATE)	SRDLKSSQL	I	29	IFT172	p.P1340H	PQRNMEVVLAVGHQLIGIGKHSAAAEL	II
1	BHLHE40	p.T163S	AKHENSRDL	I	30	HEBP2	p.F142S	FIEDRAEMTVFVRSSDGFSSAQ	II
5	CARS2	p.Q171H	RVTENIPHI	I	31	PUS7	p.E223K	TKDREGKKYIVAYHAA	II
6	SLC30A5	p.M7481	ITKQMESMK	I	32	BHLHE40	p.T163S	AKHENSRDLKSSQLVTHLHR	II
7	CSF1R	p.D698G	GYKNIHLEK	I	33	EMILIN2	p.K182R	KEGPQELQERKIQVLEEKVLRLTR	II
в	ECI1	p.¥136D	LRLDQSNLV	I	34	GIT2	p.T3095	DAVWLATQNHSALVSETTVVPFLPVNPE	II
9	NUP160	p.L308V	KVRMWSYKE	I	35	CARS2	p.Q171H	LPPTVYLRVTENIPHIISFIEGIIAR	II
.0		00000000	KVWAQHYLR	I	36	CDCA8	p.L202V	PRFDSRVFKTPGVRTPAAGERIY	II
1	MTMR12	p.R642H	HYLRWIPEA	I	37		p.V164L	IKGAAWHPRYNLIVLGRY	II
2	PUS7	p.E223K	KTKDREGKK	I	38	DDB2	p.V353L	PIKAAWHPRYNLIVLG	II
3		the strength and the	RTQDAEFLK	I	39	MEGF8	p.G2723R	AGVATLLLQLPGRPHAP	II
4	PNMAL1	p.P100R	DRTQDAEFL	I	40	XPO5	p.F920Y	EHYEALVSPILGPLYTYLHMRLSQKWQVI	II
5	TGIF1	p.M226L	RLLPDLLRK	I	41	KCNK5	p.R112C	GCLFCVFYGLFGVPLC	II
б	CDCAB	p.L202V	KTPGVRTPA	I	42	KIF26B	p.8553Y	DGCVFCFGHAKLGKYYTMI	II
7			CINFSQLSA	I	43	NUP160	p.L308V	EHDAFIFALCQDHKVRMWSYKEQMCLMVA	II
8	ZNF562	p.F268C	KTKNCGKSC	I	44	ECI1	p.Y136D	AGYWKAVQELWLRLDQSNLVLVSAINGAC	II
9	PARP4	p.T1170I	LSKENSLII	I	45	PNMAL1	p.P100R	RTQDAEFLKNLNEFL	II
0	TUT1	p.R36T	RYRTVAMAA	I	46	CARD11	p.M369I	GKDCEMYKHRMNTVILQLEEV	II
1	ARHGAP39	p.N837S	HMDPVSDTK	I	47	TUT1	p.R36T	RWWQRCLCFCRYRTVAMAAVDSDVE	II
2	CARD11	p.M3691	KHRMNTVIL	I	48	PCBP1	p.G52W	RIREESGARINISEW	II
3			YRSTPCHSV	I	49	INTS1	p.R1657G	FGPYLLTLFTHQSSWP	II
4	UNKL	p.P250H	RSTPCHSVK	I	50	MTMR12	p.R642H	GPEIKVWAQHYLRWIPEAQILGGG	II
5			QYRSTPCHS	I	51	USP9X	p.G2131R	AKLIVFIAHFSLQDRPCPSP	II
6	AP4B1	p.T89R	LLAINRLCK	I	52	ARHGAP39	p.N837S	SYLEGYIYRHMDPVSDTKGVAISTYAKY	II
			1		53	ARHGAP39	p.N837s	GYIYRHMDPVSDTKVTQHIKELLE	II
					54	PCNXL2	p.G2111A	LHDRCLAEAVADTLAVV	II
					55	TBC1D9B	p.L714V	LQVALAVLDANMEQV	II
					56	ZNF562	p.F268C	GKSCTNFSQLSAHAKTHK	II
					57	RAB11FIP3	p.V298L	PDEFDDFLTYEANEVTD	II
					58	AP4B1	p.T89R	APLKPDLALLAINRLCKD	II
					59	TGIF1	p.M226L	CNWFINARRRLLPDLLRK	II
					60	GALNS	p.C507S	GCEKLGKSLTPPESIPKKCLW	II
					61	PTPN7	p.Y239F	YDGKEKVFIATQGEMPNTVSDF	II
					62	PARP4	p.T1170I	KSLIIKLSKENSLIIQFTSFVAVEKRDEN	II
					63	UNKL	p.P250H	RRNPRRFQYRSTPCHSVKHGD	II
					64	PPP1R13L	p.D633H	ARLNPLVLLLHAALTGELEVVQ	II
					65	CYP2D6	p.V3701	IHEVQRFGDIIPLGVTHMTSRDIEV	11

Т

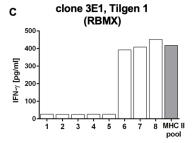
Т

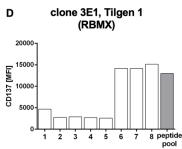

Т

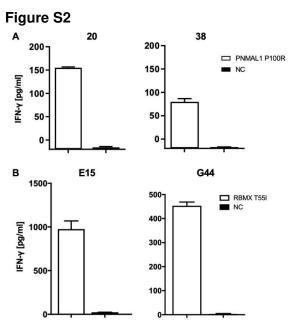
Construct	ct Cloning oligos Sequence $(5' \rightarrow 3')$		Plasmid	Marker gene
A1*1101	HLA 1101 For CGC <u>GGATCC</u> ACCATG GCCGTCATGGCGCC		pLZRS	NGFR
A1,1101	HLA 1101Rev CCG <u>GAATTC</u> TCACACTTTACAAGCTGTGAG			
DRB1*	HLA DRB For CGC <u>GGATCC</u> ACCATGGTGTGTCTGAAGCTCC		MP71	NGFR
1501	HLA DRB Rev			
	HLA DPA1 0103 For CGC <u>GGATCC</u> ACCATGCGCCCTGAAGACAGAATG			NGED
DPB1*	HLA DPA1 0103 Rev CTCCACGTCACCGCATGTTAGAAGACTTCCTCTGCCCTCCAGGGTCCCCT GGGCCC GGGCCC		pLZRS	
0201	HLA DPB1 0201 For	B1 0201 For TCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTATGATGGTTCTG		NGFR
	HLA DPB1 0201 Rev CCG <u>GAATTC</u> TTATGCAGATCCTCGTTGAAC			
	HLA DPA1 0103 For	CGC <u>GGATCC</u> ACCATGCGCCCTGAAGACAGA ATG		
DPB1*	HLA DPA1 0103 Rev	CTCCACGTCACCGCATGTTAGAAGACTTCCTCTGCCCTCCAGGGTCCCCT GGGCCC	pLZRS	l
0401	HLA DPB1 0401 For TCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCTATGATGGTTCTG CAGGTTTCT			NGFR
	HLA DPB1 0401 Rev CCG <u>GAATTC</u> TTATGCAGATCCTCGTTGAAC			1
DRB1*	HLA DRB1 0701 For CGC <u>GGATCC</u> ACCATG GTGTGTCTGAAGCTCC		pLZRS	NCER
0701	HLA DRB1 0701 Rev	31 0701 Rev CCG <u>GAATTC</u> TCAGCTCAGGAATCCTGTTGG		NGFR
DQB1* 0202	HLA DQA1 0201 For	CGCAGATCTACCATGATCCTAAACAAAGCTCTG		
	HLA DQA1 0201 Rev	0201 Rev CTCCACGTCACCGCATGTTAGAAGACTTCCTCTGCCCTCCAAGGGCCCTT GGTGTCTG		NGFR
	HLA DQB1 0202 For	TCTAACATGCGGTGACGTGGAGGAGAATCCCGGCCCT ATGTCTTGGAAAAAGGCTT	pLZRS	NGFR
	HLA DQB1 0202 Rev	CCG <u>GAATTC</u> TCAGTGCAGGAG CCCTTTC		
RBMX	RBMX Start For	Start For CGC <u>GGATCC</u> ACCATGGTTGAAGCAGATCGCC		GFP
wt/T55I	RBMX Stop Rev CCGGAATTCTAGTATCTGCTTCTGCCTCC		MP71	
	RBMX mut For GCTTTTGTCATCTTTGAAAGCCCAGC		MP71	GFP
RBMX T55I	RBMX mut Rev GGGCTTTCAAAG A TGACAAAAGCAAATCC			
PNMAL	PNMAL Start For	AL Start For CGCACGCGTCCACCATGTCCAAGACCATGGCGATG		GFP
wt/P100R	PNMAL Stop Rev CGC <u>CTCGAG</u> TCAAACCTTTCTGGATTCATTGGT		MP71	
PNMAL P100R	PNMAL mut For CTGTAGAGACCGTACCCAGGATGCTGAG		MP71	GFP
	PNMAL mut Rev	CATCCTGGGTACGGTCTCTACAGACCAC		
CARS	CARS2 Start For	art For CGC <u>ACGCGT</u> CCACCATGTTGAGGACTAC		
wt/Q171H	CARS2 Stop Rev	CGC <u>CTCGAG</u> TCAGCCCGCTGATTTTTGG	MP71	GFP
CADE2 04741	CARS2 mut For	GAAAATATTCCTCACATAATTTCTTTCATTG		GFP
CARS2 Q171H	CARS2 mut Rev GAAAGAAATTAT G TGAGGAATATTTTCGGTTAC		MP71	


Table S4. All oligonucleotides and plasmids used for cloning and amplification are shown. Т

Figures and legends


Figure S1


MHC I PP (pat. 2)				
Subpool	Peptides			
1	1,2,3,4,5,6,7,8,9,10,11,12, <u>13,</u> 14,15			
2	1,2,3,4,5,16,17,18,19,20,21,22,23,24,25			
3	1,6,7,8,9,16,17,18,19,26			
4	2,6,10,11,12,16,20,21,22,26			
5	3,7,10, <u>13,</u> 14,17,20,23,24,26			
6	4,8,11, <u>13</u> ,15,18,21,23,25			
7	5,9,12,14,15,19,22,24,25			


MHC II PP (pat. 2)				
Subpool	Peptides			
1	27,28,29,30,31,32,33,34, <u>35</u> ,36,37,38,39,40, 41,42,43,44,45,46,47			
2	27,28,29,30,31,32,48,49,50,51,52,53,54,55, 56,57,58,59,60,61,62			
3	27,33,34, <u>35,</u> 36,37,48,49,50,51,52,63,64,65			
4	28,33,38,39,40,41,48,53,54,55,56,63,64,65			
5	29,34,38,42,43,44,49,53,57,58,59,63			
6	30, <u>35</u> ,39,42,45,46,50,54,57,60,61,64			
7	31,36,40,43,45,47,51,55,58,60,62,65			
8	32,37,41,44,46,47,52,56,59,61,62			

MHC II PP (pat. 1)		
Subpool	Peptides	
1	21,22,23	
2	22,23,24	
3	23,24,25	
4	24,25,26	
5	25,26,27	
6	26,27, <u>28</u>	
7	27, 28, 21	
8	<u>28,</u> 21,22	

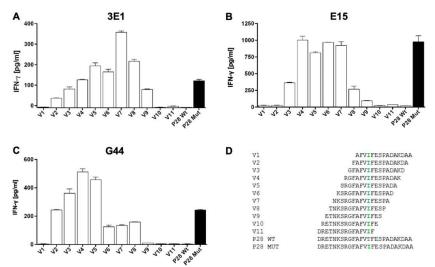


Fig. S1. Peptides of the respective MHC class I or II pool were subpooled and tested for recognition by the T-cell clones in an IFN- γ ELISA. The IFN- γ assay results are shown for (A) PNMAL1, (B) CARS2, and (C) RBMX. (D) Upregulation of CD137 as measured by flow cytometry upon peptide stimulation is shown for RBMX.

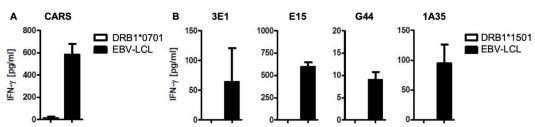

Fig. S2. Additional peptide pool reactive CD8+ T-cell clones from patient 2 (n=30) and CD4+ T-cell clones from patient 1 (n=2) were tested against PNMAL1 P100R (A) and RBMX T55I (B) peptides in an IFN- γ ELISA. For patient 2, two exemplary clones are depicted. NC (negative control): autologous EBV-LCL.

Figure S3

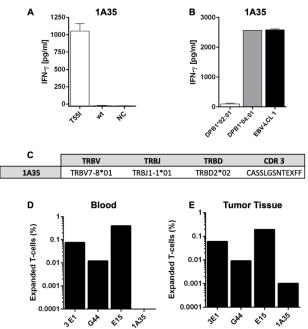

Fig. S3 The core epitope of RBMX T55I was identified for all three T-cell clones (A) 3E1, (B) E15, and (C) G44 by testing recognition of truncated peptides (D) loaded onto autologous EBV-LCL as measured in an IFN- γ ELISA. The means and SEM of duplicates are shown.

Figure S4

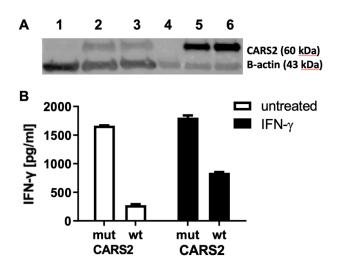

Fig. S4. T-cell recognition of HeLa cells retrovirally transduced with the predicted HLA-DRB1*0701/DRA1*0102 (A) and HLA-DRB1*1501/HLA-DRA*0102 (B). Depicted are the mean and SEM of triplicates (A) or duplicates (B) as measured after loading with CARS2 Q171H (A) and RBMX T55I (B) peptide. HLA compatible peptide-loaded EBV-LCLs were used as controls.

Fig. S5. *RBMX T55I specific T-cell responses persist after neoadjuvant chemotherapy*. (A) CD4+ T-cell clone 1A35 isolated from resected tumor tissue after neoadjuvant chemotherapy specifically recognizes RBMX T55I but not wt RBMX as measured in an IFN- γ ELISA against peptide-loaded autologous EBV-LCL from patient 1. Depicted are the mean and SEM of triplicates. NC: negative control (unloaded autologous EBV-LCL). (B) 1A35 recognizes peptide loaded HeLa cells retrovirally transduced with HLA-DPB1*0401, but not HLA-DPB1*0201 in the IFN- γ ELISA. Depicted are the mean and SEM of duplicates. (C) TCR sequencing of T-cell clone 1A35 reveals a differential variable beta chain and a unique CDR3 region. Clonotypic qPCR of all four RBMX T55I specific T-cell clones in blood (D) and tumor tissue (E) before and after neoadjuvant chemotherapy.

Figure S6

Fig. S6. (A) Western blot analysis of whole cell lysates of CARS2 mut/wt transduced and untransduced cells as control: 1- EBV-LCL 050; 2 - EBV-LCL 050 CARS2 mut; 3 - EBV-LCL CARS2 wt; 4 - MCF-7 wt; 5 - MCF-7 CARS2 mut; and 6 - MCF-7 CARS2 wt. Beta-actin serves as loading control. (B) T-cell recognition of CARS2 specific T-cell clone 55 of MCF-7 cell transduced with CARS2 Q171H and the HLA-DQ restriction molecule and additionally pulsed with the indicated peptide variants of CARS2 (wt or mut) as measured by IFN- γ ELISA.

References

1. Wurfel F, Erber R, Huebner H, et al: TILGen: A Program to Investigate Immune Targets in Breast Cancer Patients - First Results on the Influence of Tumor-Infiltrating Lymphocytes. Breast Care (Basel) 13:8-14, 2018

2. Erber R, Hartmann A, Beckmann MW, et al: [TILGen study-immunological targets in patients with breast cancer : Influence of tumor-infiltrating lymphocytes]. Pathologe 39:236-240, 2018

3. Griffioen M, van Egmond HME, Barnby-Porritt H, et al: Genetic engineering of virus-specific T cells with T-cell receptors recognizing minor histocompatibility antigens for clinical application. Haematologica 93:1535, 2008

4. Vonderheide RH, Domchek SM, Clark AS: Immunotherapy for Breast Cancer: What Are We Missing? Clin Cancer Res 23:2640-2646, 2017

5. Brochet X, Lefranc MP, Giudicelli V: IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res 36:W503-8, 2008