Protected by copyright, including for uses related to text and data mining, Al training, and similar technologies # **POSTER PRESENTATION** Open Access # Tetramer based approach for efficient identification and isolation of neo-antigen specific CD8 T cells from peripheral blood (PBL) of patients with metastatic cancers Mini Bharathan¹, Katarina Trebska-McGowan², Pasetto Anna², Drew C Deniger¹, Ken-ichi Hanada², Jared J Gartner², James C Yang³, Steven A Rosenberg¹, Paul F Robbins^{3*} From 30th Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2015) National Harbor, MD, USA. 4-8 November 2015 ## **Background** Adoptive cell therapy with T cells bearing mutation specific T cell receptors (TCR) can be an effective method for treating metastatic cancers. The objective of this study was to identify mutation reactive T cells in the circulation of patients with different types of metastatic cancer. ### **Methods** The strategy utilized whole exome sequencing data to identify somatic non-synonymous mutations and then insilico algorithms to predict minimal epitopes encoding mutated amino acids for each patient specific HLA-allele. CD8-enriched PBL from each patient were stained with tetramers generated in house by a UV-exchangeable technique as previously described for A*02:01, A*03:01, A*11:01, B*07:02, and a commercial tetramer was acquired for B*57:01. Based on the initial staining frequency (+tetramer⁺ T cells recognizing 7 unique neo-antigens from the PBL of 4 patients (ranging from 1 to 4 per patient). We enriched the frequencies of CD8⁺tetramer⁺ cells from 0.5 to >85%, 0.3 to >65% and 0.01 to 3% from the PBL of patients with colorectal (3971-A*02:01), lung (4014-B*57:01), and ovarian (4067-B*07:02) cancers respectively, using individual tetramers. Populations reactive with three HLA-A*11:0-restricted and one HLA-A*03:01-restricted neoantigens were also isolated from the PBL of lung cancer patients 4014 and 4037, respectively, using a pooled tetramer approach. ### Results Overall, the isolated T cells recognized mutated epitopes when co-cultured with autologous CD14⁺ monocytes pulsed with mutated peptides in the context of appropriate MHC-I alleles including HLA-A*02:01, HLA-A*03:01, HLA-A*11:01, HLA-B*07:02, and HLA-B*57:01, with reactivity detected using IFN- γ ELISA. Using single cell PCR, we could clone the TCRs reactive with an HLA-*02:01-presented colon cancer neoantigen and an HLA-B*57:01-presented lung cancer neoantigen. Evaluation of PBL retrovirally-transduced with these TCRs demonstrated that they bound to tetramers and secreted IFN- γ when cocultured with CD14⁺ monocytes pulsed with appropriate mutated peptides. ### **Conclusions** To conclude, tetramers offer a sensitive, fast and reliable methodology to isolate mutation specific tumor reactive T cells from PBL of cancer patients. Furthermore, this method facilitates the identification, and cloning of mutation reactive TCR with which to construct receptorengineered T cells for adoptive T cell therapy. #### Authors' details ¹NIH/NCI, Bethesda, MD, USA. ²NIH/NCI Surgery Branch, Bethesda, MD, USA. ³National Institutes of Health, Bethesda, MD, USA. ³National Institutes of Health, Bethesda, MD, USA Full list of author information is available at the end of the article Published: 4 November 2015 doi:10.1186/2051-1426-3-S2-P47 Cite this article as: Bharathan *et al.*: Tetramer based approach for efficient identification and isolation of neo-antigen specific CD8 T cells from peripheral blood (PBL) of patients with metastatic cancers. *Journal for ImmunoTherapy of Cancer* 2015 3(Suppl 2):P47. # Submit your next manuscript to BioMed Central and take full advantage of: - Convenient online submission - Thorough peer review - No space constraints or color figure charges - Immediate publication on acceptance - Inclusion in PubMed, CAS, Scopus and Google Scholar - Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit