Protected by copyright, including for uses related to text and data mining, AI training, and similar technologies

POSTER PRESENTATION

Ex vivo conditioning with IL-12 decreases T cell sensitivity to intratumoral INF-γ-induced apoptosis following adoptive transfer

C Marcela Diaz-Montero^{*}, Charles Tannenbaum, Patricia Rayman, Paul Pavicic, Jin Sub Kim, Marc Ernstoff, James Finke

From 30th Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2015) National Harbor, MD, USA. 4-8 November 2015

Background

In order to induce significant tumor regression T cells must effectively recognize and kill target cells. Secretion of IFN- γ is considered a key effector function of activated CD8⁺ T cells via induction of apoptosis. Thus programming T cells to secrete high levels of IFN- γ after adoptive transfer could represent a therapeutically effective anti-cancer intervention.

Methods

We previously demonstrated that naïve CD8⁺ T cells exposed to IL-12 during antigenic priming (Pmel^{Ag+12}) provided superior anti-tumor activity after transfer when compared to cells activated in the presence of antigen alone (Pmel^{Ag}). In this setting, tumor regression was associated with sustained levels of intra-tumoral IFN-y. Expression analysis using total tumor RNA showed elevated expression of IFN-y responsive genes such as IP-10, MCP-1, MIG, and MIP-1α. Even without IL-12 stimulation during ex vivo antigenic priming, Pmel cells were able to initially reach the tumor and secrete high levels of IFN-γ. However, by day 7 after adoptive transfer tumors in mice that received Pmel^{Ag} were significantly larger than those in mice injected with Pmel^{Ag+12}. Failure to maintain intra-tumoral levels of IFN- γ was associated with a decrease in the frequency of tumor infiltrating Pmel^{Ag}. We hypothesized that high levels of IFN- γ had a detrimental effect on Pmel^{Ag}, via induction of apoptosis. IFN- γ is a multifunctional cytokine that induces a variety of contrasting cell responses such as proliferation or cell death. The cellular response to an IFN- γ stimulus depends on the specific receptor being

activated, with IFN- γ R1 inducing proliferation and IFN- γ R2 inducing apoptosis.

Results

We tested the hypothesis that the ability of T cells to survive *in vivo* after adoptive transfer was dependent on their susceptibility to IFN- γ -induced apoptosis. Real time PCR revealed that the expression levels of IFN- γ R1 and IFN- γ R2 immediately following antigen or antigen+ IL-12 priming were similar, though by 4d post adoptive transfer the tumor-infiltrating Pmel cells stimulated with antigen alone had 10 fold higher levels of IFN- γ R2 than tumor associated Pmel^{Ag+IL-12}.

Conclusions

These results suggest that the enhanced anti-tumor activity of Pmel^{Ag+IL-12} might be due to their decreased sensitivity to IFN- γ -induced apoptosis. Thus inhibiting IFN- γ -induced activation induced cell death (AICD) by down-regulating IFN- γ R2 expression on T cells may represent a novel mechanism by which IL-12 enhances anti-tumor activity.

Published: 4 November 2015

doi:10.1186/2051-1426-3-S2-P12 Cite this article as: Diaz-Montero *et al.*: Ex vivo conditioning with IL-12 decreases T cell sensitivity to intratumoral INF-γ-induced apoptosis following adoptive transfer. *Journal for ImmunoTherapy of Cancer* 2015 3(Suppl 2):P12.

Cleveland Clinic Foundation, Cleveland, OH, USA

© 2015 Diaz-Montero et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.