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ABSTRACT
Background  In patients with metastatic urothelial 
carcinoma (mUC) receiving programmed cell death 
ligand 1 (PD-L1) inhibitors, it is critically important to 
identify primary refractory patients very early to enable 
modification of therapy before clinical progression and 
decline of performance status. We hypothesized that 
baseline and early-on-treatment (EOT) parameters may 
help identify patients likely to have primary refractory 
disease.
Methods  We considered baseline and EOT variables 
measured up to 5 weeks after initiating therapy in 
the phase 3 clinical trial IMvigor211, which compared 
atezolizumab versus chemotherapy, in muC patients who 
had progressed on platinum-based chemotherapy. We 
used least absolute shrinkage and selection operator-
regularized logistic regression models to predict the risk 
of primary refractory disease employing clinical and 
laboratory variables.
Results  902 patients were evaluable for analysis. Our 
baseline model achieves an area under the curve (AUC) of 
0.730, 0.717 for the atezolizumab group and 0.696 for the 
chemotherapy group. The AUC increases to 0.848 overall 
with EOT parameters, 0.871 for the atezolizumab group 
and 0.788 for the chemotherapy group. The EOT model 
suggests that 33.7% of patients receiving atezolizumab 
may benefit from switching to chemotherapy, reducing 
their risk of primary refractoriness from 67.1% to 51.5%.
Conclusions  Our prediction model employs readily 
available and routinely measured clinical and laboratory 
factors, such as urine-specific gravity, presence of liver 
metastases, and total protein and erythrocyte counts. It 
robustly identifies patients with early primary refractory 
disease to atezolizumab before clinical progression and 
may inform therapeutic decisions. Validation in larger 
independent cohorts and other treatments is required.

INTRODUCTION
Patients with metastatic urothelial carci-
noma (mUC) who are treated with PD1/
L1 inhibitors exhibit substantial variability 
in outcomes. Objective response rates for 

patients receiving PD1/L1 inhibitors for 
progressive disease (PD) after platinum-based 
chemotherapy range between 15% and 25%, 
and a large proportion of patients (~30%–
40%) exhibit primary refractory disease with 
PD as the best response.1–3 While the toxicities 
of PD1/L1 inhibitors are generally manage-
able, 15%–20% of patients experience severe 
side effects, and a fraction of patients suffers 
from fatal or permanent life-altering events.1 
Hence, it is essential to pre-emptively iden-
tify patients at high risk of refractory disease 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Treatment outcomes with PD1/L1 inhibitors exhibit 
substantial variability among patients with met-
astatic urothelial carcinoma, with approximately 
20% of patients showing durable responses, while 
around 35% experience primary refractory disease. 
Early identification of the primary refractory disease 
population is important to avoid futile and toxic 
therapy.

WHAT THIS STUDY ADDS
	⇒ By integrating baseline and early-on-treatment 
information, our approach improves on current 
prediction models that employ baseline factors. 
Moreover, we identified several clinical features dif-
ferentially predictive of treatment outcomes for both 
atezolizumab and chemotherapy.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our model is affordable, relying on routine clinical 
and laboratory variables, and may inform an early 
switch in therapy. Our findings constitute a proof 
of principle that early dynamics in such variables 
hold predictive value for absolute risks of refrac-
tory disease, as well as differences in risk among 
treatments. Our approach can easily be extended to 
other immunotherapy settings.
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likely to have early PD to avoid futile therapy and enable 
an early switch to other treatment choices before early 
death, rapid clinical progression, or potential ineligibility 
for second-line therapy due to frailty or decline in perfor-
mance status.

Predictive models of response have identified some 
associations between treatment outcomes and clinical 
variables such as the percentage of PD-L1-positive tumor 
and/or immune cells,4–7 tumor mutation burden,8 and 
a composite panel of baseline clinical and laboratory 
factors.9 10 Indeed, three PD1/L1 inhibitors (pembroli-
zumab, nivolumab, and avelumab) have been approved 
as monotherapy for progressive mUC following platinum-
based chemotherapy regardless of the levels of PD-L1 
expression. Moreover, previous work has focused mostly 
on identifying prognostic variables at baseline such as 
ECOG (Eastern Cooperative Oncology Group) perfor-
mance status, the presence of liver metastases, platelet 
count, neutrophil-to-lymphocyte ratio, and lactate dehy-
drogenase at baseline.11 12 However, little consideration 
has been given to the dynamics of variables measured 
after the start of treatment.

We set out to investigate the ability of routine baseline 
clinical and laboratory measurements combined with 
early-on-treatment (EOT) variables to improve prediction 
models of absolutely refractory disease, that is, PD as the 
best outcome. We estimated a logistic regression model 
using a large prospective trial dataset to predict treat-
ment outcomes for patients receiving the PD-L1 inhibitor 
atezolizumab or chemotherapy. This model relies on a 
large number of covariates, including most prominently 

urine-specific gravity, presence of liver metastases, T-stage 
of the primary tumor, total protein, platelet and eryth-
rocyte counts, as well as changes in erythrocyte counts 
during the first cycle of treatment.

Our model significantly outperforms approaches based 
on known predictors of treatment success for PD-L1 
inhibitors.11 12 Additionally, our model simultaneously 
predicts outcomes for patients receiving chemotherapy, 
identifying candidates for whom this alternative therapy 
promises better treatment outcomes.

METHODS
Data
We obtained data from the phase 3 clinical trial IMvigor211, 
which compared the PD-L1 inhibitor atezolizumab vs 
chemotherapy (taxane or vinflunine) in patients with 
mUC who had previously progressed on platinum-based 
combination chemotherapy (cisplatin and/or carbo-
platin) (figure 1).13 14 The trial included 931 patients who 
were randomized to the atezolizumab (n=467) or chemo-
therapy (n=464) arms. Patients were treated in successive 
3-week cycles with treatment administered intravenously 
on the first day of each cycle. In both groups, treatment 
was discontinued if a patient showed unacceptable 
toxicity or the patient withdrew consent. Patients in the 
chemotherapy group were treated until disease progres-
sion, while patients in the atezolizumab arm were treated 
until “symptomatic deterioration attributed to disease 
progression”.13

Figure 1  Schematic of our workflow. (A) Description of the available data from the phase three clinical trial IMVigor211. (B) 
Sketch of the trial composition of IMVigor211. (C) Brief summary of our methodology. (D) Sketch of our workflow. ECOG, 
Eastern Cooperative Oncology Group; LASSO, least absolute shrinkage and selection operator; mUC, metastatic urothelial 
carcinoma.
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The IMvigor211 dataset contains information on 
patients’ treatment history prior to the study. During the 
trial, tumor imaging and progression assessments based 
on RECIST V.1.1 were scheduled to occur in 9-week inter-
vals (every three treatment cycles) up to week 54, then 
every 12 weeks. Other clinical covariates were collected 
in 3-week intervals, starting at baseline and aligning with 
the treatment cycles. These covariates included blood 
tests, comprehensive serum chemistry, and urinalysis 
(figure  1A, online supplemental tables 1 and 2). Addi-
tionally, adverse events were recorded as they occurred.

Statistical modeling approach
To predict the clinical endpoint of risk of treatment 
failure (defined in detail below) under either atezoli-
zumab or chemotherapy, we established two logistic 
regression models using least absolute shrinkage and 
selection operator (LASSO) for regularization. The first 
model used only baseline variables, while the second 
model was based on both baseline and EOT variables 
(see “Methods” section). We used the area under the 
receiver operating characteristic curve (AUC) as a metric 
to assess the performance of these models relative to each 
other and relative to other known predictive factors.11 12 
Due to dropouts, we estimated the EOT model on only 
a subset of the patients in the baseline model. To disen-
tangle changes in model performance stemming from 
added information versus patient selection, we addition-
ally estimated a version of our baseline model in which we 
restricted the patient cohort to only those patients used 
in estimating the EOT model.

Our models predict treatment-specific risks for atezoli-
zumab and chemotherapy for each patient. This approach 
allowed us to investigate the potential for personalized 
treatment decisions at baseline by comparing the mean 
predicted risk under each therapy to the mean predicted 
risk if every patient received the therapy that minimizes 
their personal predicted risk. Analogously, we compared 
predicted risks in the EOT model to quantify the benefits 
of switching between therapies after the first treatment 
cycle. Lastly, we characterized groups of patients who 
stood out as having very large differences in predicted 
risks between the two treatments.

Outcome variable and censoring considerations
The outcome of interest, treatment failure, is defined as 
having a best recorded treatment response of ‘PD’. To 
account for dropouts within the first three cycles, we addi-
tionally classified patients as having treatment failure if 
they died prior to the first tumor assessment. Patients who 
dropped out of the study for other reasons before having 
a tumor assessment were, thus, not counted toward the 
treatment failure group. However, as a robustness check, 
we verified that including these patients in the treatment 
failure group yielded similar results for both models 
(online supplemental tables 3 and 4).

A second potential source of censoring bias is that 
patients who demonstrate early PD may actually have 

pseudoprogression with subsequent response, in which 
case they would be falsely counted toward the treatment 
failure group. We expect this effect to be relatively minor 
in advanced urothelial carcinoma, as pseudoprogression 
is a rare event.15 Nevertheless, as a robustness check, we 
also estimated models in which we changed our outcome 
variable to “progression or death prior to a landmark 
time” (online supplemental tables 5 and 6).

Data preparation
Out of 931 patients, 29 patients dropped out before 
the start of treatment. The remaining 902 patients were 
included in our analysis regardless of when they discon-
tinued treatment. To deal with missing values in the 
dataset, we excluded all cardinal variables with missing 
values at baseline. For missing categorical variables, we 
defined missing values as a separate category and verified, 
as a sensitivity analysis, that our prediction models did not 
depend on this category (online supplemental methods 
1.1).

For the EOT model, we removed all variables that had 
more than 20 patients with missing values and excluded 
all patients from the estimation who had missing values in 
the remaining set of variables. This approach left us with 
483 patients. The variables that were retained included 
some that were previously recognized as prognostic, for 
example, performance status, sites of metastasis, and 
hemoglobin, and others which are not commonly recog-
nized as prognostic, for example, urine-specific gravity. 
The complete list of the variables in the baseline and 
EOT models is shown in online supplemental tables 1 
and 2, respectively. Note that the added variables in the 
EOT model compared with the baseline model, with this 
exclusion procedure, include not only variables that were 
measured in the first treatment cycle, but also variables 
measured at baseline for which patients that were now 
excluded in the EOT model had missing values. Differ-
ences in performance between the models can, therefore, 
not be purely attributed to variables which are measured 
post baseline.

Even though treatment cycles in both treatment groups 
in IMVigor211 were scheduled to last 3 weeks, there was 
considerable variability between patients with respect to 
when clinical measurements for the first treatment cycle 
were taken. We, thus, chose day 22 to day 35 as the period 
for examining the EOT variables, to avoid having to drop 
patients whose measurements for the first treatment 
cycle were taken slightly later than was scheduled. Conse-
quently, we only considered patients who survived beyond 
day 35 of the study in our EOT model.

Estimation procedure
All variables were centered at zero and scaled to have unit 
variance prior to estimation. For the logistic regression 
model, we incorporated each variable listed in online 
supplemental tables 1 and 2 independently, as well as in 
interaction with the treatment group variable. Thereby, 
we separated the effect of each covariate into a common 
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and a treatment-specific effect, which allowed us to iden-
tify covariates that differentially affect the risk of treat-
ment failure in the two treatment groups. Moreover, for 
each variable in our EOT model (online supplemental 
table 2), we also included an interaction term with an 
indicator for whether a patient experienced any early 
immune-related adverse events (see discussion in online 
supplemental methods 1.2). Since our dataset contained 
hundreds of clinical variables, we used LASSO to select 
the most relevant covariates for our logistic regression 
models. To balance model complexity and model fit, we 
used 10-fold cross-validation to choose the LASSO penalty 
parameter.

RESULTS
Patient characteristics
At baseline, patients in the trial cohort had an average 
age of 66 years. All patients had previously received 
platinum-based chemotherapy (14.4% received both 
carboplatin and cisplatin, 28.5% only carboplatin, and 
55.9% only cisplatin). Moreover, patients had an average 
of 1.95 metastatic sites, 28.5% had liver metastases, and 
58.2% had lymph node metastases at baseline13 (online 
supplemental table 1).

Those patient characteristics were very similar among 
the subset of patients we considered in our EOT model 
(see online supplemental table 2). The average age was 
66, the percentages of patients having received prior 
treatment with carboplatin and cisplatin, carboplatin 
only, or cisplatin only were 15.7, 24.4, and 58.6 respec-
tively, and the average number of metastatic sites was 1.92 
with 24.2% having liver metastases and 60% having lymph 
metastases.

We also investigated whether there were any structural 
differences between the set of patients in our EOT model 
and the set of patients who lived beyond day 35 of the 
study, but who were excluded from the EOT model due 
to missing values. Based on the baseline variables without 
missing values, we found no such difference (F-test, 
p=0.107 (0.098) when performed on the first 30 (40) 
principal components of the data capturing 91% (99.8%) 
of the variability in the data).

Prognostic model using baseline parameters
We used a logistic regression modeling approach using 
baseline clinical and laboratory variables to predict the 
risk of progression as the best response after atezoli-
zumab treatment in chemotherapy-refractory mUC 
(n=902 patients). This baseline model achieves an AUC 
of 0.725 across the two treatment groups, with a sensi-
tivity of 0.39 at a specificity of 0.90 (figure  2A). When 
considering the chemotherapy group or the atezoli-
zumab group separately, our models achieve AUCs of 
0.696 and 0.717, respectively (figure  2C). Factors that 
were significantly associated with higher risk in both 
treatment groups include the presence of liver metastases 
(OR: 1.579, p<0.001), low PD-L1 expression (IC0/IC1; 

not IC2; OR: 1/0.834=1.199, p=0.015), low albumin levels 
(OR: 1.285, p=0.001), and low serum hemoglobin (OR: 
1.210, p=0.015) (table 1). Additionally, we identified an 
association between the T-stage of the primary tumor 
and treatment outcomes, with a high T-stage (4a or 4b) 
being weakly but not significantly associated with worse 
outcomes for both therapies (ORs: 1.132 and 1.176, 
p=0.100 and 0.050), and a T1-stage predicting a lower 
risk in the atezolizumab group specifically (OR: 0.792, 
p=0.003).

Prognostic model using EOT parameters
We then estimated a logistic regression model that takes 
into account EOT variables. This EOT model achieved 
an AUC of 0.848 overall, with 0.871 for the atezolizumab 
treatment group and 0.788 for the chemotherapy treat-
ment group (figure  2). At a specificity of 0.90 across 
both treatments, the sensitivity was 0.60. Compared 
with the baseline model, the EOT model had a much 
larger set of variables with non-zero coefficients in our 
LASSO approach, and no covariates stood out as domi-
nant predictors (table  2). The set of selected variables 
includes various changes in values of laboratory tests 
over the first cycle of treatment; for instance, increases in 
erythrocytes are associated with a lower risk (OR: 0.681, 
p=0.031). Moreover, there is a large set of variables that 
are differentially associated with risk in both treatment 
arms (table  2). For instance, high urine-specific gravity 
and the presence of bone, but no other, metastases is 
associated with a higher risk of treatment failure for treat-
ment with atezolizumab (OR: 1.504, p=0.009 and OR 
1.458, p=0.036, respectively), while T-stage T1 is associ-
ated with a higher risk of chemotherapy treatment failure 
(OR: 0.761, p=0.035).

The increase in AUC of the EOT compared with the 
baseline model cannot be attributed solely to the added 
information that the additional EOT variables contribute, 
since the EOT model describes a selected subset of the 
population in the baseline models—those patients who 
survived beyond day 35 of the study. To isolate the magni-
tude of this improvement in AUC compared with the base-
line model attributable to the additional covariates, we 
repeated the estimation procedure for the set of patients 
that were included in the EOT model, but with only the 
covariates that were available in our baseline model. This 
restricted model achieves an AUC of 0.760 (compared 
with the AUC of the baseline model of 0.725, and the 
set of variables selected through LASSO in this restricted 
model is relatively similar to the baseline model (see 
online supplemental table 7). The remaining sizeable 
gap in AUC between this restricted model and the EOT 
model (0.760 vs 0.848) suggests that the added covariates 
do provide substantial relevant further information. This 
observation is further supported by a notable reduction 
in the Akaike information criterion from 597.68 in the 
restricted model to 538.17 in the EOT model, indicating 
improved model fit while accounting for the increase in 
model complexity.
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EOT model versus conventional baseline predictors
We then compared the prediction performance of our 
model to that of known baseline risk factors, namely those 
reported by Sonpavde et al,11 the Bellmunt risk factors,12 
and PD-L1 expression, on the IMvigor211 dataset. To 
this end, we estimated three further logistic regression 
models with these known risk factors as regressors and 
without employing LASSO. Our EOT model outperforms 
each of these models by a large margin: while the models 
based on known risk factors achieve AUCs between 0.580 
and 0.646, our EOT model achieves an AUC of 0.871 for 
the atezolizumab group. Similarly, for the chemotherapy 
group, the alternative models achieve AUCs between 
0.558 and 0.672, while our EOT model achieves an AUC 
of 0.788 (figure 2D). Some of the components of the best-
performing alternative model in figure 2D, namely pres-
ence of liver metastases as well as platelet and lymphocyte 
counts, also feature in our EOT model. Yet, the improved 
performance of our EOT model suggests that combining 

these components with further regressors substantially 
improves predictive ability.

At baseline, not all covariates in the Sonpavde et al11 
model are available for all patients. Models using the 
number of Bellmunt risk factors or PD-L1 expres-
sion (analogous to the other two alternative models in 
figure  2D) parameterized on the patient cohort in the 
baseline model yield AUCs of 0.612 and 0.540, respec-
tively (not shown). Here, again, our baseline model 
outperforms these models (AUC of 0.725 across the two 
treatment groups).

We then further investigated the distributions of 
predicted risks of treatment failure in our models 
(figure 3). To illustrate the relationship between predicted 
risks and realized outcomes for the baseline and the EOT 
model, respectively, we visualized patient outcomes on a 
plane spanning the predicted risk of treatment failure 
of patients in the chemotherapy group (horizontal axis 
in figure 3A) and the predicted risk of treatment failure 

Figure 2  Model performance. (A, B) Receiver operating characteristic (ROC) curves of the baseline model and the EOT model 
for both treatment groups together. (C) Area under the ROC curves by treatment groups. (D) Area under the ROC curves of 
alternative logistic regression models estimated using the same patient cohort as for the EOT model, and using only known 
risk factors. From right to left, the models have the following regressors: categorical indicators for the PD-L1 expression 
categories ‘IC0’, ‘IC1’ and ‘IC2’; the number of Bellmunt risk factors identified12; and the factors identified by Sonpavde et al,11 
including presence of liver metastases, ECOG performance status, platelet count, neutrophil-to-lymphocyte ratio and lactate 
dehydrogenase. AUC, area under the curve; EOT, early-on-treatment.
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of patients in the atezolizumab group (vertical axis in 
figure 3A). The position of an individual patient on this 
plane indicates the predicted risk of treatment failure 
under either treatment, while color and symbol, respec-
tively, indicate the treatment that each patient received 
and their realized treatment outcome, respectively.

Comparison of the models in the atezolizumab versus 
chemotherapy groups
We found that the predicted risks of treatment failure for 
atezolizumab and chemotherapy are strongly correlated 
with each other in the baseline model (figure 3B, Pearson 
correlation coefficient of 0.86). This observation suggests 
a limited scope for improving outcomes with personalized 
treatment decisions. The predicted risks are less correlated 
in the EOT model (figure 3C, Pearson correlation coef-
ficient of 0.77). Comparing the mean predicted risks of 
treatment failure for both treatments across all patients 
in our cohort, we found that at baseline, the risk of treat-
ment failure can be reduced by 4.3 percentage points 
compared with the standard of care (atezolizumab) and 
by 3.4 percentage points compared with random assign-
ment in the trial when switching to the alternative treat-
ment. The potential for risk reduction suggested by our 
EOT model is larger: according to this model, personal-
ized treatment decisions at day 35 reduce the risk of treat-
ment failure by 6.6 percentage points relative to standard 
of care and by 6.2 percentage points relative to random 
assignment (figure  3C). Moreover, the EOT model 
suggests that 33.7 percent of patients who were initially 
treated with atezolizumab would benefit from switching to 

chemotherapy after the first treatment cycle and predicts 
that such a switch reduces the risk of treatment failure for 
the subpopulation of patients who survive at least 35 days 
by 15.6 percentage points (from 67.1% to 51.5%).

Based on this analysis, we observed that there are several 
patients with substantially (more than 30 percentage 
points) higher predicted risk under atezolizumab than 
under chemotherapy (figure  3C). This observation 
agrees with observed treatment outcomes—most patients 
in this region who received atezolizumab had treatment 
failure, while those who received chemotherapy did 
not. Conversely, there are far fewer patients with a more 
than 30 percentage points higher predicted risk under 
chemotherapy than under atezolizumab (figure 3C). The 
patients with the largest differences in predicted risk of 
treatment failure between the two treatments, therefore, 
tend to have a higher predicted risk under atezolizumab 
and a lower risk under chemotherapy, and not vice versa. 
This finding is consistent with clinical observations1 that 
there is more variability in responses to immunothera-
pies compared with chemotherapies, and that this higher 
variability is driven by a combination of (1) moderately 
improved outcomes among responders and (2) a group 
of patients who show no response.

Differentially predictive covariates for response to 
atezolizumab versus chemotherapy
In the EOT model, differences in predicted risks between 
the two treatments were associated with covariates with 
treatment-specific effects (table 2). We, thus, investigated 
which of these covariates are particularly enriched among 

Table 1  Baseline model

Variable OR 95% CI (lower) 95% CI (upper) P value

Liver met. 1.579 1.355 1.840 <0.001 ***

Albumin<=lower limit of normal 1.285 1.105 1.495 0.001 **

Atez. × TUM Stage T1 0.792 0.680 0.923 0.003 **

IC2 (5%–10% PD-L1 positive immune cells) 0.834 0.722 0.965 0.015 *

Serum hemoglobin <100 g/L 1.210 1.037 1.413 0.015 *

TUM stage T4B 1.176 0.999 1.384 0.050

Atez. × Visceral met. 1.231 0.969 1.564 0.087

TUM stage T4A 1.132 0.977 1.311 0.100

Age 0.892 0.770 1.034 0.128

Brain met. 0.887 0.760 1.035 0.128

Atez. x Bone met. only 1.145 0.959 1.365 0.135

Prior treatment with cisplatin and carboplatin 0.899 0.773 1.046 0.171

Atez. 1.197 0.892 1.606 0.231

Lymph met. 0.922 0.799 1.064 0.271

Atez. × Prior treatment with only cisplatin 1.094 0.896 1.336 0.377

Atez. x Distant metastasis stage M0 1.088 0.894 1.323 0.400

(Intercept) 1.270 0.030 53.762 0.901

Atez. × TUM stage TIS 2.832 4.644e-22 1.727e+22 0.968

(*, **and *** indicate p values <0.5,0.01 and 0.001, respectively). Variables are ordered by p value. “H” and “L” indicate clinical annotations for high 
and low values, respectively.
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Table 2  EOT model

Variable OR 95% CI (lower) 95% CI (upper) P value

Atez. × urine specific gravity 1.504 1.110 2.038 0.009 **

Liver met. 1.595 1.121 2.270 0.009 **

Protein 0.728 0.562 0.943 0.016 *

Erythrocytes 0.724 0.551 0.951 0.020 *

ΔErythrocytes 0.681 0.481 0.965 0.031 *

Atez. × TUM stage T1 0.761 0.591 0.980 0.035 *

Calcium “H” 1.343 1.021 1.767 0.035 *

Atez. × Bone met. only 1.458 1.024 2.075 0.036 *

Platelets 1.377 1.020 1.859 0.036 *

TUM stage T4B 1.334 1.008 1.765 0.044 *

Age 0.772 0.596 1.000 0.049 *

Thyroxine (free) 0.682 0.465 0.999 0.050

Prior treatment with cisplatin and carboplatin 0.770 0.571 1.037 0.084

IC2 (5%–10% PD-L1 positive immune cells) 0.805 0.628 1.032 0.087

Calcium “L” 1.336 0.948 1.883 0.097

Lymphocytes “L” 1.320 0.941 1.854 0.108

Prior treatment with only cisplatin 1.273 0.948 1.707 0.109

Thyrotropin 0.825 0.649 1.050 0.118

ΔMagnesium 1.487 0.874 2.530 0.143

Transitional cell carcinoma with mixed histology 1.185 0.931 1.508 0.166

EIRAE × ΔMagnesium 1.241 0.898 1.715 0.190

Magnesium “H” 1.242 0.873 1.768 0.226

Atez. × Bilirubin 1.339 0.797 2.251 0.269

Atez. × Aspartate aminotransferase 1.298 0.791 2.132 0.301

EIRAE 1.177 0.830 1.668 0.359

Atez × glucose 1.196 0.788 1.816 0.401

Atez. × Liver met. 1.189 0.792 1.784 0.403

Visceral met. 1.158 0.820 1.636 0.403

Leucocytes 1.092 0.843 1.414 0.506

Atez. × ΔBilirubin 1.155 0.755 1.767 0.508

ΔAlkaline phosphatase 1.103 0.784 1.551 0.571

Prothrombin international normalized ratio 1.155 0.694 1.922 0.578

Prothrombin international normalized ratio “H” 1.125 0.683 1.855 0.644

Atez.×Lymphocytes “L” 1.093 0.747 1.599 0.645

ΔC reactive protein 0.728 0.180 2.943 0.656

Atez. × Visceral met. 0.942 0.554 1.602 0.824

Chloride 0.986 0.766 1.270 0.915

Atez. × Δ25-dihydroxyvitamin D 0.049 1.258e−216 1.920e+213 0.990

Atez. × TUM stage TIS 5.124 1.852e−119 1.418e+120 0.991

Atez. × ΔThyrotropin 3.838 1.656e−165 8.897e+165 0.994

Sodium “H” 2.298 1.355e−153 3.896e+153 0.996

(Intercept) 0.911 4.098e−23 2.026e+22 0.997

(*, **and *** indicate p values below 0.05, 0.01 and 0.001). Variables are ordered by p value. “H” and “L” indicate clinical annotations for 
high and low values, respectively.
EIRAE, early immune-related adverse event; EOT, early-on-treatment.

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies. 
.

E
rasm

u
sh

o
g

esch
o

o
l

at D
ep

artm
en

t G
E

Z
-L

T
A

 
o

n
 M

ay 20, 2025
 

h
ttp

://jitc.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
7 M

ay 2025. 
10.1136/jitc-2025-011740 o

n
 

J Im
m

u
n

o
th

er C
an

cer: first p
u

b
lish

ed
 as 

http://jitc.bmj.com/


8 Graser CJ, et al. J Immunother Cancer 2025;13:e011740. doi:10.1136/jitc-2025-011740

Open access�

the patients with the largest differences in predicted risks 
of treatment failure due to the two treatment options to 
characterize this set of patients. We dichotomized the 
patient cohort into two groups based on whether the 
patients’ risk of treatment failure under atezolizumab 
was more than 30 percentage points greater than under 
chemotherapy (figure  3D). We then contrasted the 
respective distributions of the covariates with treatment-
specific effects from our EOT model for those two groups 
(figure  3E). We found that there is no single covariate 
that clearly delineates these two groups—rather, there 
are several covariates whose means differ significantly 
between the groups, but the distributions of those covari-
ates strongly overlap. This characterization suggests that 
a multidimensional score is needed to characterize those 
patients who would fare better with chemotherapy than 
with atezolizumab.

Analogously, we investigated the group of patients 
for whom our EOT model predicts a more than 20 
percentage points higher risk of treatment failure under 
chemotherapy (online supplemental figure 1). We found 
significant differential enrichment for all except three of 
the covariates (changes in vitamin D, glucose levels, and 
the indicator for low levels of lymphocytes) that have a 
treatment-specific effect in the EOT model, showing that 

also for this group of patients the difference in predicted 
outcomes between the two treatments is driven by several 
different covariates. For instance, aspartate aminotrans-
ferase levels, bilirubin levels, bilirubin changes over 
the first cycle, and urine-specific gravity are on average 
significantly higher among patients with more than 20 
percentage points higher risk of treatment failure under 
chemotherapy.

DISCUSSION
While immune checkpoint inhibitors can yield very favor-
able clinical responses in some patients, there is also a 
substantial share of patients who show no positive clinical 
response. This large variability in treatment outcomes has 
sparked various efforts to identify predictive markers to 
distinguish patients who will respond to immunotherapy 
from those who will not,10 11 with the goal of identifying 
patients with a high risk of early treatment failure on 
immunotherapy who might have better expected treat-
ment outcomes by switching to other therapeutic options.

We set out to directly quantify the opportunity for 
improved treatment outcomes by simultaneously esti-
mating a patient-specific risk of treatment failure for 
atezolizumab and chemotherapy. We analyzed readily 

Figure 3  Model predictions. (A) Conceptual guide to the plots in B, C. (B, C) Scatter plots of predicted risk of treatment failure 
for all 902 patients in the baseline model (B) and all 483 patients in the EOT model (C). (D) Schematic demonstrating how the 
patient cohort was split for analyses shown in E. (E) Distribution of the variables in the EOT model which have a treatment-
specific effect, for patients whose risk of treatment failure is at least 30 percentage points higher under atezolizumab than 
under chemotherapy (red) and for the remaining patients (blue). AST, aspartate aminotransferase; EOT, early-on-treatment; TSH, 
Thyroid-Stimulating Hormone .
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available baseline and EOT clinical and laboratory factors 
from the IMvigor211 phase III trial which compared 
atezolizumab versus chemotherapy for patients with mUC 
that progressed following platinum-based chemotherapy.

Our baseline model achieved an AUC of 0.725 overall, 
0.717 for the atezolizumab group and 0.696 for the 
chemotherapy group, while the EOT model achieved an 
AUC of 0.848 overall, 0.871 for the atezolizumab group 
and 0.7879 for the chemotherapy group. Thus, the EOT 
model substantially outperforms the baseline model and 
achieves a substantial improvement in prediction perfor-
mance relative to currently available prediction tools, as 
the comparisons with models based on known predictors 
demonstrate. Further improvements in predictive perfor-
mance might be achievable when training models on 
larger and multimodal datasets of relevant patient groups.

While the covariates in our models are derived from 
routine clinical measurements available in many coun-
tries, access to immune checkpoint inhibitors remains 
limited in some regions. By improving the precision 
of patient selection, we hope that our model will not 
only improve treatment outcomes but also contribute 
to making immune checkpoint inhibitors more cost-
effective and accessible.

The EOT model included some factors that were 
present in the baseline model, for example, age and 
indicators for T-Stage T4B and for the presence of liver 
metastases, but most factors were newly identified clin-
ical and laboratory factors, such as urine specific gravity, 
protein and erythrocyte levels, as well as the change in 
erythrocyte levels over the first cycle. Several factors, such 
as urine-specific gravity and the indicator for T-Stage T1, 
differentially predict treatment in atezolizumab versus 
chemotherapy. It is intriguing that we observed several 
patients with predicted high risk of early progression 
on atezolizumab and low risk of progression on chemo-
therapy, while the reverse was not observed.

For many factors in our model, an association with 
treatment outcomes is biologically plausible; for 
instance, we indeed expect that the presence of metas-
tases in different organs correlates with worse treatment 
outcomes. For other factors, the biological link to treat-
ment outcomes is less apparent; for instance, the T-stage 
of the primary tumor features prominently in our model, 
even though the model was built on a cohort of patients 
with metastatic disease. While our findings can be used 
to formulate hypotheses for mechanistic links between 
factors and outcomes, for example, a higher T-stage 
may be associated with higher rates of ongoing seeding 
of new metastases attributable to greater molecular 
heterogeneity and evolution of a larger primary tumor, 
the associations in our model are all correlative and not 
necessarily causal.

One prominent predictor in both the baseline and the 
EOT model is PD-L1 expression. While this feature is 
mechanistically linked to atezolizumab response, PD-L1 
expression is known to fluctuate dynamically, often 
limiting its predictive utility.16 17 The performance of 

predictive models would, therefore, likely improve with 
more granular longitudinal PD-L1 measurements.

Our findings based on the IMVigor211 patient cohort 
indicate that the risks of treatment failure under atezoli-
zumab and chemotherapy are strongly correlated at 
baseline and less correlated in the EOT model (Pearson 
correlation coefficients of 0.84 and 0.77, respectively). 
Accordingly, the EOT model predicts larger differences in 
risk of treatment failure between the two treatments, and 
thus, more scope for personalized treatment decisions 
to improve treatment outcomes. In particular, the EOT 
model suggests that switching to chemotherapy reduces 
the risk of treatment failure for about a third of patients 
treated with atezolizumab. The resulting average reduc-
tion in risk for this group (67.1%–51.5%) is appreciable 
but not substantial. However, the predicted reduction in 
risk within this group has a wide distribution, with large 
reductions (>30 percentage points) for many patients. 
Identifying such patients may substantially improve treat-
ment outcomes for this subset.

These suggestions require validation in a better 
controlled setting, as the EOT model is parameterized 
with a share of the observations gathered at a time when 
individuals in the two treatment arms have undergone 
one cycle of treatment, so that the two arms are no longer 
perfect counterfactuals of one another. Notably, circu-
lating tumor (ct)-DNA appears promising to detect the 
molecular disease burden to trigger adjuvant therapy 
and early response to therapy. However, it is unclear if 
decisions regarding changes in ongoing therapy for 
metastatic disease can be made based on molecular 
disease burden progression.18 Moreover, the require-
ment for adequate amounts of tumor material, turn-
around time, and costs are barriers to implementing 
tumor-informed ctDNA assays. One ongoing phase III 
trial, SERENA-6 (NCT04964934), is evaluating the effi-
cacy of switching from an aromatase inhibitor to camiz-
estrant, an oral selective estrogen receptor degrader, 
while continuing the same CDK4/6 in combination, if 
molecular progression is observed in terms of a new ESR1 
mutation detected in ctDNA for HR+/HER2− advanced 
breast cancer.19 However, this trial does not address other 
mechanisms of progression. Another previously reported 
clinical trial evaluated a switch from initial chemotherapy 
to a different chemotherapy based on early changes in 
circulating tumor cells (CTCs) in patients with metastatic 
breast cancer.20 While this previously reported trial did 
not identify improved outcomes by employing informa-
tion for early CTC dynamics, a switch to a different class 
of therapy, for example, immunotherapy or targeted 
therapy, may have been more successful.

We found that our ability to predict treatment failure 
increases substantially when moving from the baseline to 
the EOT model (AUC increase from 0.725 to 0.848). Aside 
from the added information contained in the additional 
variables in the EOT model, part of this increase is due to 
differences in the composition of the patient cohorts at 
baseline and at EOT. A model using baseline covariates 
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that is estimated using only the subset of patients who are 
considered in the EOT model performs better than the 
baseline model with the full patient cohort (AUC increase 
from 0.725 to 0.76).

Our modeling of early dynamics under treatment 
was constrained by the time intervals between clinical 
measurements in IMVigor211. Our EOT model conse-
quently predicts refractory disease after 1 cycle of treat-
ment, which is roughly 1–2 months before refractory 
disease would likely be diagnosed via imaging. Neverthe-
less, identifying primary refractory disease before clin-
ical or radiographic progression has value since clinical 
progression may lead to a decline in performance status 
and ineligibility for switching to an alternative systemic 
therapy. While reducing the duration of futile treatment 
by this margin is valuable, we expect that the power to 
predict treatment failure based on the variables in the 
EOT model increases gradually from the beginning of 
treatment, so that shorter time intervals between measure-
ments might enable even earlier identification of patients 
likely to have treatment failure.

Our study is a retrospective analysis, although prospec-
tively collected data from a well-conducted phase III trial 
were used. A key difference between the patient popula-
tions in the baseline compared with the EOT model is that 
at baseline, there are far more patients who will die before 
ever having their treatment response status assessed. As 
these patients are counted toward the treatment failure 
group in the baseline model, the increased prediction 
performance of baseline covariates for the patient cohort 
in the EOT model relative to the patient cohort in the 
baseline model indicates that there is limited overlap 
between factors that predict survival beyond 35 days and 
those that predict treatment response.

Although atezolizumab has been withdrawn from the 
urothelial carcinoma indication, leveraging this trial data 
offers a unique opportunity to provide proof of principle 
by studying treatment responses to a PD-L1 inhibitor and 
the alternative chemotherapy in the same cohort. Given 
the similarities of PD1/L1 inhibitors, our modeling 
approach is easily transferrable to other PD-L1 inhibitors 
and potentially to other classes of agents.

Our approach differs from previous prediction models 
for treatment outcomes under atezolizumab in that we 
do not preselect the number of variables that are used for 
prediction. To avoid overfitting, we use LASSO for regu-
larization and choose the LASSO parameter using 10-fold 
cross-validation. With this approach, our model combines 
a large set of variables, and no individual variables stand 
out as dominant predictors. Similarly, the group of 
patients who have a substantially lower risk of treatment 
failure under chemotherapy than under atezolizumab 
cannot easily be delineated by a single variable, as several 
variables contribute to this difference in risk.

The performance of our EOT model (AUC=0.848) 
suggests that a large multivariable model using routine 
EOT clinical and laboratory metrics has the potential to 
improve our ability to predict treatment outcomes for 

patients receiving atezolizumab. However, validation on 
independent patient cohorts and evaluation in other 
therapeutic contexts is needed.

Our approach provides a proof of principle that 
dynamics early during treatment can be used to simul-
taneously predict the risk of refractory disease for PD-L1 
inhibitors and chemotherapy, and thus enable personal-
ized therapeutic decisions.

For the IMVigor211 trial dataset, our EOT model 
suggests that ~34% of patients who were initially treated 
with atezolizumab may benefit from switching to another 
therapy after the first treatment cycle, which may reduce 
the risk of early treatment failure, decline in performance 
status, and ineligibility for subsequent treatment. This 
early setting after one cycle of therapy may represent an 
opportunity to develop novel systemic therapy employing 
early dynamics of routine clinical and laboratory parame-
ters, which is considerably more cost-effective and globally 
scalable compared with molecular assays such as ctDNA.

Author affiliations
1Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, 
USA
2Department of Biostatistics, Harvard T H Chan School of Public Health, Cambridge, 
Massachusetts, USA
3Department of Stem Cell and Regenerative Biology, Harvard University, Boston, 
Massachusetts, USA
4Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, Massachusetts, 
USA
5University of Central Florida, Orlando, Florida, USA
6AdventHealth Cancer Institute, Orlando, Florida, USA
7The Eli and Edythe L Broad Institute, Cambridge, Massachusetts, USA
8Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts, USA

X Guru Sonpavde @sonpavde

Acknowledgements  This publication is based on research using data from data 
contributors Roche that has been made available through Vivli, Inc. Vivli has not 
contributed to or approved, and is not in any way responsible for, the contents 
of this publication. While institutional affiliations are limited to two per journal 
policy, Franziska Michor and Thomas O McDonald would like to acknowledge their 
affiliation with the Center for Cancer Evolution at the Dana-Farber Cancer Institute, 
and Franziska Michor would additionally like to acknowledge her affiliation with the 
The Eli and Edythe L. Broad Institute and with the Ludwig Center at Harvard.

Contributors  CG, GS and FM conceptualized and designed the study. GS facilitated 
and funded data access. CG conducted the analyses in discussion with all other 
authors. CG and FM wrote the manuscript with edits from GS, TOM and PJC. 
Guarantor: CG.

Funding  This study was supported by the Center for Cancer Evolution at the Dana-
Farber Cancer Institute.

Competing interests  GS declares the following conflicts of interest. Advisory 
Board: EMD Serono, BMS, Merck, Seattle Genetics, Astellas, Janssen, Bicycle 
Therapeutics, Pfizer, Gilead, Scholar Rock, Eli Lilly, Loxo Oncology, Vial, Aktis, 
Daiichi-Sankyo; Consultant/Scientific Advisory Board (SAB)/trial steering committee: 
Syapse, Merck, Servier, Syncorp, Ellipses; Research Support to institution: EMD 
Serono, Jazz Therapeutics, Bayer, Sumitomo Pharma, Blue Earth Diagnostics; 
Speaker: Seagen, Gilead, Natera, Exelixis, Janssen, Astellas, Bayer, Aveo, Pfizer, 
Merck; Data safety monitoring committee (honorarium): Mereo; Employment: 
Spouse employed by Myriad, Exact Sciences; Travel: BMS, Astellas. FM is a 
co-founder of and has equity in Harbinger Health, has equity in Zephyr AI, and 
serves as a consultant for both companies. She is also on the board of directors 
of Recursion Pharmaceuticals. She declares that none of these relationships are 
directly or indirectly related to the content of this manuscript. The other authors 
declare no conflicts of interest.

Patient consent for publication  Not applicable.

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies. 
.

E
rasm

u
sh

o
g

esch
o

o
l

at D
ep

artm
en

t G
E

Z
-L

T
A

 
o

n
 M

ay 20, 2025
 

h
ttp

://jitc.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
7 M

ay 2025. 
10.1136/jitc-2025-011740 o

n
 

J Im
m

u
n

o
th

er C
an

cer: first p
u

b
lish

ed
 as 

https://x.com/sonpavde
http://jitc.bmj.com/


11Graser CJ, et al. J Immunother Cancer 2025;13:e011740. doi:10.1136/jitc-2025-011740

Open access

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data may be obtained from a third party and are not 
publicly available.

Supplemental material  This content has been supplied by the author(s). It has 
not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been 
peer-reviewed. Any opinions or recommendations discussed are solely those 
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and 
responsibility arising from any reliance placed on the content. Where the content 
includes any translated material, BMJ does not warrant the accuracy and reliability 
of the translations (including but not limited to local regulations, clinical guidelines, 
terminology, drug names and drug dosages), and is not responsible for any error 
and/or omissions arising from translation and adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Christopher J Graser http://orcid.org/0009-0003-8552-7767
Thomas O McDonald http://orcid.org/0000-0002-5272-0187
Paul J Catalano http://orcid.org/0000-0002-1105-8852
Guru Sonpavde http://orcid.org/0000-0002-1010-9611
Franziska Michor http://orcid.org/0000-0003-4869-8842

REFERENCES
	 1	 Bellmunt J, de Wit R, Vaughn DJ, et al. Pembrolizumab as Second-

Line Therapy for Advanced Urothelial Carcinoma. N Engl J Med 
2017;376:1015–26. 

	 2	 Patel MR, Ellerton J, Infante JR, et al. Avelumab in metastatic 
urothelial carcinoma after platinum failure (JAVELIN Solid Tumor): 
pooled results from two expansion cohorts of an open-label, phase 1 
trial. Lancet Oncol 2018;19:51–64. 

	 3	 Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment 
leads to clinical activity in metastatic bladder cancer. Nature New 
Biol 2014;515:558–62. 

	 4	 Gibney GT, Weiner LM, Atkins MB. Predictive biomarkers for 
checkpoint inhibitor-based immunotherapy. Lancet Oncol 
2016;17:e542–51. 

	 5	 Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 
ligands, and other features of the tumor immune microenvironment 
with response to anti-PD-1 therapy. Clin Cancer Res 
2014;20:5064–74. 

	 6	 Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency 
predicts response of solid tumors to PD-1 blockade. Science 
2017;357:409–13. 

	 7	 Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in 
patients with locally advanced and metastatic urothelial carcinoma 
who have progressed following treatment with platinum-based 
chemotherapy: a single-arm, multicentre, phase 2 trial. The Lancet 
2016;387:1909–20. 

	 8	 Teo MY, Seier K, Ostrovnaya I, et al. Alterations in DNA Damage 
Response and Repair Genes as Potential Marker of Clinical Benefit 
From PD-1/PD-L1 Blockade in Advanced Urothelial Cancers. J Clin 
Oncol 2018;36:1685–94. 

	 9	 Pond GR, Niegisch G, Rosenberg JE, et al. New 6-factor prognostic 
model for patients (pts) with advanced urothelial carcinoma (UC) 
receiving post-platinum atezolizumab. JCO 2018;36:413. 

	10	 Nassar AH, Mouw KW, Jegede O, et al. A model combining clinical 
and genomic factors to predict response to PD-1/PD-L1 blockade in 
advanced urothelial carcinoma. Br J Cancer 2020;122:555–63. 

	11	 Sonpavde G, Manitz J, Gao C, et al. Five-Factor Prognostic Model 
for Survival of Post-Platinum Patients with Metastatic Urothelial 
Carcinoma Receiving PD-L1 Inhibitors. J Urol 2020;204:1173–9. 

	12	 Bellmunt J, Choueiri TK, Fougeray R, et al. Prognostic factors in 
patients with advanced transitional cell carcinoma of the urothelial 
tract experiencing treatment failure with platinum-containing 
regimens. J Clin Oncol 2010;28:1850–5. 

	13	 Powles T, Durán I, van der Heijden MS, et al. Atezolizumab versus 
chemotherapy in patients with platinum-treated locally advanced 
or metastatic urothelial carcinoma (IMvigor211): a multicentre, 
open-label, phase 3 randomised controlled trial. The Lancet 
2018;391:748–57. 

	14	 Study details | a study of atezolizumab compared with chemotherapy 
in participants with locally advanced or metastatic urothelial bladder 
cancer [IMvigor211]. ​ClinicalTrials.​gov. Available: https://clinicaltrials.​
gov/study/NCT02302807 [Accessed 6 Oct 2024].

	15	 Soria F, Beleni AI, D’Andrea D, et al. Pseudoprogression and 
hyperprogression during immune checkpoint inhibitor therapy for 
urothelial and kidney cancer. World J Urol 2018;36:1703–9. 

	16	 Davis AA, Patel VG. The role of PD-L1 expression as a predictive 
biomarker: An analysis of all US food and drug administration (FDA) 
approvals of immune checkpoint inhibitors. J Immunother Cancer 
2019;7:1–8. 

	17	 Grossman JE, Vasudevan D, Joyce CE, et al. Is PD-L1 a consistent 
biomarker for anti-PD-1 therapy? The model of balstilimab in a 
virally-driven tumor. Oncogene 2021;40:1393–5. 

	18	 Powles T, Assaf ZJ, Davarpanah N, et al. ctDNA guiding adjuvant 
immunotherapy in urothelial carcinoma. Nature New Biol 
2021;595:432–7. 

	19	 Turner N, Huang-Bartlett C, Kalinsky K, et al. Design of SERENA-6, 
a phase III switching trial of camizestrant in ESR1-mutant breast 
cancer during first-line treatment. Future Oncol 2023;19:559–73. 

	20	 Smerage JB, Barlow WE, Hortobagyi GN, et al. Circulating tumor 
cells and response to chemotherapy in metastatic breast cancer: 
SWOG S0500. J Clin Oncol 2014;32:3483–9. 

P
ro

tected
 b

y co
p

yrig
h

t, in
clu

d
in

g
 fo

r u
ses related

 to
 text an

d
 d

ata m
in

in
g

, A
I train

in
g

, an
d

 sim
ilar tech

n
o

lo
g

ies. 
.

E
rasm

u
sh

o
g

esch
o

o
l

at D
ep

artm
en

t G
E

Z
-L

T
A

 
o

n
 M

ay 20, 2025
 

h
ttp

://jitc.b
m

j.co
m

/
D

o
w

n
lo

ad
ed

 fro
m

 
7 M

ay 2025. 
10.1136/jitc-2025-011740 o

n
 

J Im
m

u
n

o
th

er C
an

cer: first p
u

b
lish

ed
 as 

http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0009-0003-8552-7767
http://orcid.org/0000-0002-5272-0187
http://orcid.org/0000-0002-1105-8852
http://orcid.org/0000-0002-1010-9611
http://orcid.org/0000-0003-4869-8842
http://dx.doi.org/10.1056/NEJMoa1613683
http://dx.doi.org/10.1016/S1470-2045(17)30900-2
http://dx.doi.org/10.1038/nature13904
http://dx.doi.org/10.1038/nature13904
http://dx.doi.org/10.1016/S1470-2045(16)30406-5
http://dx.doi.org/10.1158/1078-0432.CCR-13-3271
http://dx.doi.org/10.1126/science.aan6733
http://dx.doi.org/10.1016/S0140-6736(16)00561-4
http://dx.doi.org/10.1200/JCO.2017.75.7740
http://dx.doi.org/10.1200/JCO.2017.75.7740
http://dx.doi.org/10.1200/JCO.2018.36.6_suppl.413
http://dx.doi.org/10.1038/s41416-019-0686-0
http://dx.doi.org/10.1097/JU.0000000000001199
http://dx.doi.org/10.1200/JCO.2009.25.4599
http://dx.doi.org/10.1016/S0140-6736(17)33297-X
https://clinicaltrials.gov/study/NCT02302807
https://clinicaltrials.gov/study/NCT02302807
http://dx.doi.org/10.1007/s00345-018-2264-0
http://dx.doi.org/10.1186/S40425-019-0768-9/FIGURES/2
http://dx.doi.org/10.1038/s41388-020-01611-6
http://dx.doi.org/10.1038/s41586-021-03642-9
http://dx.doi.org/10.2217/fon-2022-1196
http://dx.doi.org/10.1200/JCO.2014.56.2561
http://jitc.bmj.com/

	Early dynamics of clinical and laboratory parameters predict primary refractory disease in patients with metastatic urothelial carcinoma receiving atezolizumab
	Abstract
	Introduction﻿﻿
	Methods
	Data
	Statistical modeling approach
	Outcome variable and censoring considerations
	Data preparation
	Estimation procedure

	Results
	Patient characteristics
	Prognostic model using baseline parameters
	Prognostic model using EOT parameters
	EOT model versus conventional baseline predictors
	Comparison of the models in the atezolizumab versus chemotherapy groups
	Differentially predictive covariates for response to atezolizumab versus chemotherapy

	Discussion
	References


