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Section 1. Supplementary Methods

1.1 Study design and participants

This study retrospectively selected patients with histologically confirmed gastric
cancer who received anti-PD-1 immunotherapy at Sun Yat-sen University Cancer
Center (SYUCC) in Guangzhou, China, in order to predict the response to anti-PD-1
immunotherapy and assess its clinical outcomes. Patients were included if they met
the following criteria: (1) histologically confirmed gastric adenocarcinoma; (2)
treatment with anti-PD-1 or anti-PD-L1 inhibitors for at least two cycles, either as
monotherapy or combined with chemotherapy; (3) available complete information
about clinicopathological characteristics and follow-up data; (4) available high-quality
H&E-stained slides that were obtained before the start of immune checkpoint
inhibition. and (5) no history of other malignancies. Patients were excluded if the
clinical response could not be evaluated. The identical inclusion and exclusion criteria
were applied to patients with gastric cancer undergoing immunotherapy at Nanfang
Hospital of Southern Medical University (SMU) and Guangdong Provincial Hospital
of Chinese Medicine (GPHCM), both located in Guangzhou, China, to establish

external validation cohorts. Pipeline of pathomics feature computations.

1.2.1 Image acquisition and processing

The H&E-stained slides of all patients included in this study were prepared using
formalin-fixed paraffin-embedded samples. The director of the Department of

Pathology selected sections that were most representative of the depth of invasion in

3/20

Han Z, et al. J Immunother Cancer 2024; 12:008927. doi: 10.1136/jitc-2024-008927



BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer

each case. These selected slides were then scanned using the Aperio ScanScope
Scanner system (Leica Biosystems) with the x40 objective, and the resulting images
were digitized as svs. format files. The Aperio ImageScope software (version 12.4.6)

was used to manage these files.

To ensure adequate image quality, all whole slide images (WSIs) were reviewed.
Whenever possible, WSIs at 40x magnification (0.25 um/pixel) were processed and
analyzed. In some cases, slides were scanned at 20x magnification and the
corresponding images were used. Tissue segmentation was performed using the
publicly available CLAM repository'. The resulting regions of interest (ROIs) were
then carefully examined and refined by two expert pathologists using ImageScope

software (Supplementary Figure 2).

For a subset of the WSIs, there were regions with pen marks, folds, and blurred
artifacts from TCGA. To address this, we utilized the Openslide software to down-
sample the whole-slide images by a factor of 32. We then applied appropriate color
filters to remove these regions with pen marks, folding, and blurring artifacts

(https://github.com/histolab/histolab).

1.2.2 Pathomics feature extraction

In order to develop a pathomics-based model, three types of quantitative
pathomics features were extracted, including nucleus features, single-cell spatial
distribution features, and deep microenvironment features. These categories provide
comprehensive information on individual cell morphology, cellular spatial distribution,

and the overall microenvironment of the tumor (Supplementary Figure 2).
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First, features related to tumor nuclei were extracted. After segmenting tumor
nuclei using a HoverNet model?, three categories of nucleus features were extracted,
including nuclear intensity, morphology, and texture features. This was done using the
'MeasureObjectIntensity’, 'MeasureObjectSizeShape', and 'Measure Texture' modules
in the CellProfiler platform®. The extracted features were then aggregated using
statistical measures such as mean, median, standard deviation, 25th quantiles, and
75th quantiles for each region of interest (ROI) in the slide. In total, 525 pNUC

features were generated for each patient.

Second, deep microenvironment features were extracted. Image patches of size
256x256 were extracted from all identified tissue regions without overlap. These
patches were then encoded into 1024-dimensional feature vectors using a ResNet50
model pretrained on ImageNet. This encoding was performed by applying spatial
average pooling after the 3rd residual block. To expedite this process, multiple GPUs

were utilized for parallel computation with a batch size of 256 per GPU.

Finally, single-cell spatial distribution features were extracted. For each whole
slide image (WSI), a ROI image of size 8192x8192 pixels was cropped at 40x
magnification using Openslide. A HoverNet model® pretrained on the Pannuke
dataset* was employed to segment and classify cells in the ROI, including tumor cells,
lymphocytes, stromal cells, dead cells, and non-neoplastic epithelial cells. The
number of tumor cells, lymphocytes, and stromal cells per unit square was computed
on a 16x16 pm?® grid to generate an RGB image. In this image, the red, green, and
blue channels represent the density maps of tumor cells, lymphocytes, and stromal
cells, respectively. The same ResNet50 model used for tumor microenvironment
feature extraction was applied to capture different cell types and their spatial

organization patterns in the RGB image.

5/20

Han Z, et al. J Immunother Cancer 2024; 12:008927. doi: 10.1136/jitc-2024-008927



BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) J Immunother Cancer

Section 2. Supplementary Tables

Supplementary Table 1. Comparison of predictive performance among ensemble

models combining three different base models in multiple cohorts

Ensemble model Training cohort Internal validation cohort External validation cohort  External validation cohort
1 2
AUC (95% CI) AUC (95% CI)
AUC (95% CI) AUC (95% CI)
KNN +LASSO+ DT+ RF 0.985(0.971-0.999) 0.921(0.839-0.999) 0.914(0.837-0.990) 0.927 (0.802-0.999)
SVM+LASSO+ DT+ RF 0.943(0.906-0.981) 0.879(0.774-0.983) 0.8226(0.7861-0.859) 0.9115(0.787-0.999)
LR+LASSO+ DT+ RF 0.927(0.876-0.977) 0.788(0.641-0.934) 0.6738(0.6388-0.709) 0.6052(0.5781-0.7323)

Data are mean (95% CI). AUC, area under the curve; LASSO, least absolute shrinkage and selection operator; SVM, support vector

machine; KNN, k-nearest neighbors; LR, logistic regression; DT, decision trees; KNN, k-nearest neighbors; RF, random forests.

Supplementary Table 2. Delong test for ROC improvements of pathomics-driven

ensemble model compared to individual prediction models and CPS in multiple

cohorts
Internal validation External validation External validation
Model Training cohort p value p value p value p value
cohort cohort 1 cohort2
Pathomics-driven
/ / / / / / / /
ensemble model
LASSO 3.074 0.002 3.130 0.001 3.803 0.000 1.902 0.057
Logistic Regression 8.998 <0.001 6.210 <0.001 9.060 <0.001 2.952 0.003
SVM 3.004 0.003 3.896 <0.001 4.822 <0.001 2.866 0.004
Decision Tree 3.060 0.002 2.638 0.008 2.396 0.017 3.391 <0.001
Random Forest 4.830 <0.001 2.927 0.003 1.739 0.082 2.011 0.044
KNN 5.559 <0.001 2.851 0.004 4.209 <0.001 4.380 <0.001
CPS 8.24 <0.001 4.1568 <0.001 6.0171 <0.001 3.94 <0.001

Note: Data were metric value. LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; KNN, k-

nearest neighbors; CPS, combined positive score of PDL1 expression. p<0-05 indicated significant difference between models in the test.
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Section 3. Supplementary Figures

Study

Patients enrollment for development and validation of pathomics-driven ensemble model

Training cohort Internal validation cohort External validation cohort 1 External validation cohort 2
(Sun Yat-sen University (Sun Yat-sen University (Nanfang Hospital of Southern (Guangdong Provincial Hospital
Cancer Center) Cancer Center) Medical University) of Chinese Medicine)
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Supplementary Figure 1. Patient enrollment for development and validation of
pathomics-driven ensemble model. H&E, hematoxylin-eosin; WSI, whole slide image;

TCGA-STAD, the cancer genome atlas-stomach adenocarcinoma.
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Supplementary Figure 2. Pipeline of WSI processing and pathomics feature extraction.

WSI, whole slide image; ROI, region of interest.
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Supplementary Figure 3. Histograms of treatment strategy(A), line of therapy(B) and
response(C) in different cohorts of patients treated with immune checkpoint inhibitor

(ICD) therapy.
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Supplementary Figure 4. Prediction profiles of pathomics-driven ensemble model.All
individual participants were identified as responders or nonresponders by the
ensemble model, and recognized as true postive (red), false negative(cyan), true
negative (blue) and false positive(carmine) according to their true lables of

immunotherapy response in all datasets.
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Supplementary Figure 5. Comparison of prediction performance between the

pathomics-driven ensemble model, other models, and CPS in multiple cohorts. For

comparison methods, the ensemble model was compared with other models (logistic

regression, SVM) and CPS. Receiver operating characteristic curves of predictive

performance for immunotherapy effect in patients with gastric cancer among logistic

regression, SVM, CPS and the pathomics-based ensemble model in the training

cohort (A), internal validation cohort (B), external validatipression; LR, logistic

regression; SVM, support vector machine; PDEM, the Pathomics-Driven Ensemble

Model.
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Supplementary Figure 6. Comparison of prediction performance between the
pathomics-driven ensemble model and single kind of pathomics features models in
the training cohort (A) and internal validation cohort (B). AUC, area under curve;
95%CI, 95%Confidence Interval; pNUC, pathomics nucleus features; pMENY,
pathomics deep microenvironment features; pSCSD, pathomics single-cell spatial

distribution features; PDEM, the Pathomics-Driven Ensemble Model.
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Supplementary Figure 7. Overall survival Kaplan-Meier curve analysis of prediction

populations. Patients identified as 'predicted responders' by pathomics-driven

ensemble model presented favorable overall survival than that of patients identified as

'predicted nonresponders ' in the training cohort (A), internal validation cohort (B),

external validation cohort 1 (C), and external validation cohort 2(D).
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Supplementary Figure 8. Progression-free survival Kaplan-Meier curve analysis of

actual populations. Patients with "Turth responders ' presented favorable progression-

free survival than that of patients with ' Turth nonresponders ' in the training cohort

(A), internal validation cohort (B), external validation cohort 1 (C), and external

validation cohort 2(D).
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Parameters Number of patients HR(95%CI) p value
Prediction c]aiﬂ\ls(l)f;lnc_g;gglﬁders vs. Responders 1507114 - 0.35(0.24-0.50) <0. 001
Sex, female vs. male 99/174 —— 0.92(0.66-1.27) 0.599
Age, >60Y vs. <60 Y 140/133 - — 1.15(0.84-1.57) 0.386
CEA,Normal vs.Elevated 190/83 —.— 0.94(0.66-1.32) 0.712
CA199,Normal vs.Elevated 198/75 — 0.92(0.65-1.32) 0.657
Thcrap{/[‘(?fc‘r‘t?xg?:;py vs.Combination therapy 73/200 —_— 0.92(0.64-1.30) 0.621
Lineoftherapy,1 vs.>2 132/141 J 1.28(0.93-1.76) 0.127
Differentiation 0.139

Well vs.Moderate 6340 —_—t 0.61(0.34-1.11) 0.105

Well vs.Poor or undifferentiation 63170 —_ 1.05(0.72-1.53) 0.817

PD-LI expression (CPS) 0.039
<1vs.1-10 61143 —=— 0.68(0.47-1.00) 0.048

<1vs>10 61/69 - 0.58(0.37-0.90) 0015

Location 0.014
Cardia vs.Body 71/55 T 1.46(0.91-2.34) 0.117

Cardia vs.Antrum 71/128 i e 1.28(0.85-1.93) 0.238

Cardia vs.Whole 71/19 2.64(1.45-4.79) 0.001

Supplementary Figure 10. Forest plot for the Univariate cox regression analysis of

progression-free survival. CPS,combined positive score of PD-L1 expression.
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Supplementary Figure 11. Kaplan-Meier survival analysis according to the prediction

populations stratified by clinicopathological risk factors. P-values were calculated by

log-rank test.
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Supplementary Figure 12. SHAP heatmap plot. Passing a matrix of SHAP values to
the heatmap plot function creates a plot with the instances on the x-axis, the model
inputs on the y-axis, and the SHAP values encoded on a color scale. The output of the
model is shown above the heatmap matrix, and the global importance of each model
input shown as a bar plot on the right-hand side of the plot. SHAP, SHapley Additive
exPlanations;pNUC, pathomics nucleus features; pMENYV, pathomics deep

microenvironment features; pSCSD, pathomics single-cell spatial distribution features.
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Supplementary Figure 13. Heatmaps of the important features correlation. pNUC,
pathomics nucleus features; pMENYV, pathomics deep microenvironment features;

pSCSD, pathomics single-cell spatial distribution features.
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Supplementary Figure 14. SHAP decision plot.The x-axis represents the model’s
output. All SHAP values are relative to the model’s expected value like a linear
model’s effects are relative to the intercept. The y-axis lists the model’s features. By
default, the features are ordered by descending importance. The importance is
calculated over the observations plotted. Each observation’s prediction is represented
by a colored line. At the top of the plot, each line strikes the x-axis at its
corresponding observation’s predicted value. This value determines the color of the
line on a spectrum. * Moving from the bottom of the plot to the top, SHAP values for
each feature are added to the model’s base value. This shows how each feature

contributes to the overall prediction. SHAP, SHapley Additive exPlanations;pNUC,
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pathomics nucleus features; pMENYV, pathomics deep microenvironment features;

pSCSD, pathomics single-cell spatial distribution features.
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