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ABSTRACT
Background  Antibodies blocking programmed death 
(PD)-1 or its ligand (PD-L1) have revolutionized cancer 
care, but many patients do not experience durable 
benefits. Novel treatments to stimulate antitumor immunity 
are needed in the PD-(L)1 refractory setting. The stimulator 
of interferon genes (STING) protein, an innate sensor 
of cytoplasmic DNA, is a promising target with several 
agonists in development. However, response rates in most 
recent clinical trials have been low and mechanisms of 
response remain unclear. We report detailed biomarker 
analyses in a patient with anti-PD-L1 refractory, Merkel 
cell polyomavirus (MCPyV)-positive, metastatic Merkel cell 
carcinoma (MCC) who was treated with an intratumoral 
(IT) STING agonist (ADU-S100) plus intravenous anti-PD-1 
antibody (spartalizumab) and experienced a durable 
objective response with regression of both injected and 
non-injected lesions.
Methods  We analyzed pretreatment and post-treatment 
tumor and peripheral blood samples from our patient 
with single-cell RNA sequencing, 30-parameter flow 
cytometry, T cell receptor sequencing, and multiplexed 
immunohistochemistry. We analyzed cancer-specific CD8 
T cells using human leukocyte antigen (HLA)-I tetramers 
loaded with MCPyV peptides. We also analyzed STING 
expression and signaling in the tumor microenvironment 
(TME) of 88 additional MCC tumor specimens and in MCC 
cell lines.
Results  We observed high levels of MCPyV-specific 
T cells (12% of T cells) in our patient’s tumor at 
baseline. These cancer-specific CD8 T cells exhibited 
characteristics of exhaustion including high TOX and low 
TCF1 proteins. Following treatment with STING-agonist 
plus anti-PD-1, IT CD8 T cells expanded threefold. We also 
observed evidence of likely improved antigen presentation 
in the MCC TME (greater than fourfold increase of HLA-I-
positive cancer cells). STING expression was not detected 
in any cancer cells within our patient’s tumor or in 88 
other MCC tumors, however high STING expression was 
observed in immune and stromal cells within all 89 MCC 
tumors.

Conclusions  Our results suggest that STING agonists may 
be able to work indirectly in MCC via signaling through 
immune and stromal cells in the TME, and may not 
necessarily need STING expression in the cancer cells. This 
approach may be particularly effective in tumors that are 
already infiltrated by inflammatory cells in the TME but are 
evading immune detection via HLA-I downregulation.

INTRODUCTION
Innate immune sensors of pathogen-
associated molecular patterns (PAMPs) 
represent an important host defense mecha-
nism against infectious agents and have been 
employed as targets in several oncology clin-
ical trials to stimulate anticancer immunity.1 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Stimulator of interferon genes (STING) agonists have 
shown promise in preclinical cancer models by ac-
tivating CD8 T cells13 14 and initiating both local and 
systemic anticancer responses. However human 
mechanistic studies remain limited.

WHAT THIS STUDY ADDS
	⇒ This study of a patient with excellent response to in-
tralesional STING agonism demonstrates increased 
expression of antigen presentation genes and non-
specific T cell expansion likely driven by innate im-
mune cells present in the tumor microenvironment 
prior to therapy.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study suggests that STING agonist therapies 
may be particularly effective in tumors that evade 
immune detection by downregulating antigen pre-
sentation. Future clinical trials and biomarker stud-
ies could benefit from focusing on this mechanism 
to refine therapeutic strategies.
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Stimulator of interferon genes (STING) protein is a 
PAMP sensor that appears to be a promising target in 
preclinical mouse models.2–5 The STING pathway senses 
cytoplasmic DNA through cyclic guanosine monophos-
phate–adenosine monophosphate (GMP-AMP) synthase 
(cGAS), which then produces cyclic GMP-AMP as a 
secondary messenger. This in turn acts on STING protein 
to induce transcription of type I interferons and inflam-
matory cytokines via nuclear factor kB and interferon 
regulatory factor 3.3 The STING pathway is thought to 
have evolved to protect against double-stranded DNA 
viruses that replicate in the cytoplasm of cells; however, 
it can also be engaged by DNA-damaging chemother-
apies and radiation that cause DNA release into the 
cytoplasm.6 7 Murine models have shown that these DNA-
damaging therapies lead to adaptive anticancer immune 
responses, primarily through activation of STING in 
dendritic cells in the tumor microenvironment (TME).6 8 
Based on these findings, several novel agents designed to 
directly engage STING have been developed.9–12 These 
STING agonists, when delivered intratumorally (IT), 
appear to increase IT infiltration of natural killer (NK) 
cells, activate CD8 T cells13 14 and facilitate both local and 
systemic anticancer responses.

While IT administration of STING agonists has been 
successful in murine models, recent clinical trials 
have yielded disappointing results. In a clinical trial 
(NCT02675439) of IT ADU-S100 monotherapy in 47 
patients with metastatic tumors, only 1 patient had a 
confirmed response.11 Of note, the only responding 
patient had a diagnosis of Merkel cell carcinoma (MCC). 
In a separate trial (NCT03172936) of IT ADU-S100 in 
combination with intravenous anti-programmed death 
(PD)-1 (spartalizumab) in 106 patients with metastatic 
tumors, only 11 patients responded (objective response 
rate of 10%) with 10 patients achieving a partial response 
(PR) and 1 patient receiving a complete response (CR).10 
One of those 11 responders also had a diagnosis of MCC 
and is the subject of this report.

MCC is a rare neuroendocrine cancer associated with 
Merkel cell polyomavirus (MCPyV; a double-stranded 
DNA virus) and/or ultraviolet radiation exposure, and 
usually occurs in older and/or immunosuppressed 
patients.15 Both MCPyV-positive (VP) and MCPyV-negative 
(VN) MCC tumors are considered immunogenic with 
excellent prognosis in patients with brisk IT infiltration of 
CD8 T cells.16 Both MCC subsets have a particularly high 
response rate to agents that block PD-1 or its ligand (PD-
L1), with around half of patients experiencing durable 
responses.17–20 However, for patients with PD-(L)1 refrac-
tory MCC tumors, there is a strong unmet need for effec-
tive therapies. Unlike most other cancers, VP-MCC allows 
unique opportunities to study cancer-specific immune 
responses because MCPyV-specific CD8 T cells can be 
isolated across patients using peptide-major histocom-
patibility complex (MHC) multimers. This approach can 
provide insight into mechanisms of response and failure 
for immunotherapies.

Here, we describe the clinical course along with 
detailed biomarker analyses of a patient with metastatic 
VP-MCC, refractory to avelumab (anti-PD-L1 antibody) 
treatment, who experienced durable clinical response in 
both injected and non-injected lesions with combination 
treatment of IT STING-agonist (ADU-S100) plus intrave-
nous anti-PD-1 (spartalizumab). To further assess the rele-
vance of our findings to patients with MCC in general, we 
also determined STING expression and activity in other 
MCC tumor samples and cell lines.

RESULTS
Clinical MCC history and response to STING agonist and anti-
PD-1
A patient in their 60’s presented with a primary VP-MCC 
tumor located on the left knee along with draining 
inguinal lymph node metastasis, which was initially treated 
with surgery and adjuvant radiotherapy (figure 1A). One 
month later, they developed distant metastatic disease 
in the left elbow region. They received systemic treat-
ment with intravenous avelumab, which resulted in a CR. 
Avelumab was electively discontinued after completing 1 
year of therapy. Nine months later, the patient developed 
recurrence with multifocal MCC metastases in the left 
lower extremity, which were refractory to a 6-month long 
retreatment with avelumab.

The patient was subsequently enrolled in the above-
mentioned clinical trial (NCT03172936) and received 
IT injections of the STING agonist (ADU-S100) with 
intravenous spartalizumab, both administered every 4 
weeks. They experienced quick-onset clinical benefit 
with rapid regression of both injected and non-injected 
lesions, starting soon after the first treatment, leading to 
an overall PR (43% reduction in size of target lesions; 
figure  1B), per Response evaluation criteria in solid 
tumors (RECIST) V.1.1. After only two administrations 
of ADU-S100, there were no residual injectable lesions 
and hence IT ADU-S100 was discontinued. After experi-
encing disease control for 1 year, the patient experienced 
MCC progression again with new metastases in the left 
lower extremity (figure 1B) and started another systemic 
therapy.

During the course of their treatment, we collected 
serial tumor biopsies and peripheral blood specimens 
to characterize antitumor immune response via detailed 
immunophenotyping of MCC cancer and immune cells, 
including cancer-specific CD8 T cells, both in the TME 
and peripheral blood samples.

IT STING agonism increased T cell infiltration into MCC tumors
We first performed single-cell RNAseq (scRNAseq) with 
feature barcoding (CITEseq) on pretreatment and post-
treatment tumor and blood specimens in an unbiased 
approach to study cell populations and gene expression 
profiles at various time points. DNA barcoded human 
leukocyte antigen (HLA)-I tetramers containing MCPyV 
or bystander cytomegalovirus (CMV) and Epstein-Barr 
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virus (EBV) peptides were used to identify antigen-specific 
T cells (figure 2).21 We then designed a 27-fluorophore 
flow cytometry panel to further refine the initial obser-
vations from the CITEseq studies and to also allow the 
identification of rare cell populations that could have 
been missed due to the lower number of cells that can be 
analyzed via scRNAseq (figure 2A).

Unbiased clustering and dimensionality reduction in 
the pretreatment (baseline) tumor biopsy revealed the 
TME composition of 70% cancer cells and 28% immune 
cells, with the remaining 2% of cells bearing markers 
of stromal/endothelial cells including CD34. 95% of 
immune cells were in the T cell, NK cell or dendritic cell 
clusters, with other cells such as B cells, tumor-associated 
macrophages and neutrophils being relatively rare. Mean-
while, cancer cells are primarily grouped into two distinct 
clusters of proliferating and non-proliferating cells, as 
differentiated by Ki67 expression.

Following IT STING agonist injection, cancer cells 
decreased from 70% to 49% of the TME, while all T 
cells (CD4 and CD8) increased twofold from 18% 

to 36% (figure  2B and C). Further subclustering of 
MCC cancer cells, T cell and myeloid populations 
(figure 2, online supplemental figures 1–3) revealed 
that while both cancer cell populations decreased 
over the course of immunotherapy, the most dramatic 
change was in the proliferating cancer cells, which 
decreased from 17% of all cells in the TME before 
treatment to 5% following treatment (figure  2D). 
Subclustering of T cells revealed that memory CD4 
T cells, Regulatory T cells (TREG), CLA+CD8 T cells, 
progenitor exhausted, and terminally exhausted CD8 
T cells each comprised more than 2% of the cells in 
the TME prior to STING treatment. All T cell popu-
lations increased proportionally following treatment 
without major phenotypic changes (figure  2E). No 
significant changes were observed in myeloid cells. 
However, a high portion of myeloid cells were plas-
macytoid dendritic cells (2.7% of pretreatment cells, 
marked by CD123 expression), which are thought 
to specialize in sensing some PAMPs. An additional 
2% of cells in the TME were classical dendritic cells 
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Figure 1  Clinical MCC course and characterization of partial response to intratumoral STING agonist+intravenous anti-
PD-1 therapy. (A) Schematic of clinical course of a patient in their 60’s with multifocal metastases on left lower extremity (LLE) 
from MCPyV+MCC, which had progressed on prior PD-(L)1 blockade. They were enrolled on a clinical trial (NCT03172936) 
and received two intratumoral injections of the STING agonist (ADU-S100) plus intravenous anti-PD-1 (spartalizumab), both 
administered every 4 weeks. The patient experienced rapid-onset regression of both injected and non-injected lesions, with 
durable partial response maintained for 53 weeks before developing progression. (B) Size of injected and non-injected tumors 
on the LLE throughout the time course depicts a partial response to therapy with an overall decrease in disease burden of 
43%. The injected tumor is shown in red with non-injected tumors in black. (C) Representative CT and PET/CT images of 
LLE lesions are shown prior to, during, and at the time of disease progression. MCC, Merkel cell carcinoma; MCPyV, Merkel 
cell polyomavirus; PD-1, programmed cell death protein-1; PD-(L)1, programmed death-ligand 1; PET, positron emission 
tomography; RT, radiotherapy; STING, stimulator of interferon genes.
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performed on pretreatment and post-treatment tumor and blood specimens for unbiased analyses. Key markers and cell 
populations were identified and used to design a 30-parameter flow cytometry panel to validate samples in high throughput 
fashion to capture rare cell populations. (B) UMAP plot of 30-parameter flow cytometry data from pre-STING and post-STING 
agonist treatment. Each point represents one cell colored by cell lineage. Samples were subsetted to 10,000 cells per time 
point for visualization purposes. (C) Alluvium plot of tumor composition before and after STING agonism showing expansion of 
T cells and contraction of cancer cells following treatment with STING agonist. (D) Alluvium plot of cancer cells subclustered 
into proliferating MCC and non-proliferating cells showing contraction of both populations. (E) Alluvium plot of T cells showing 
an expansion of T cells following STING agonism. All T cells expanded similarly regardless of phenotype. (F) Alluvium plot 
of myeloid cells before and after STING agonist treatment. A predominance of plasmacytoid dendritic cells was noted but 
minimal changes occurred over the course of therapy. cDC, classical dendritic cells; CITEseq, feature barcoding; CLA, 
cutaneous lymphocyte antigen; DNT, double negative T cells; Eff, effector; MCC, Merkel cell carcinoma; Mem, memory; Myelo, 
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proliferating; STING, stimulator of interferon genes; TAM, tumor associated macrophages; tExh, terminally exhausted; TREG, 
Regulatory T cell; t-SNE, t-distributed stochastic neighbor embedding; UMAP, Uniform Manifold Approximation and Projection.
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(marked by high CD11c expression). Both dendritic 
cell populations expressed high levels of STING 
protein (online supplemental figure 3).

Cancer-specific CD8 T cells expand in tumors following IT 
STING agonism
Given the overall increase in T cells observed following 
STING agonism, we sought to characterize the dynamics 
of antigen-specific T clones in the tumor and blood using 
a dual approach schematized in figure 3A. T cell speci-
ficity was identified using DNA barcoded HLA-I tetramers 
(with MCPyV, CMV or EBV peptides) with paired CITEseq 
and T-cell receptor (TCR) variable-diversity-joining 
(V(D)J) sequencing (figure  3B). Cancer-specificity of 
multimer-positive cells was further supported by visual-
izing CD39 positivity in these cells, known to be elevated 
in IT cancer-specific T cells.22 This resulted in 12 T cell 
clonotypes specific for MCPyV in a B*37:01 allele. CD8 T 
cells specific for other MCPyV or other viral epitopes were 
detected at low levels, and antigen-specific TCRs could 
not confidently be identified.

T cell clonal frequency was quantified using bulk beta 
TCRseq (figure 3C). This approach revealed that bulk T 
cells (CD4 and CD8) expanded from 3.3% of the TME 
before STING agonism to 13% after agonism, similar to 
the T cell expansion measured using flow cytometry. This 
expansion appeared to be non-specific as all T cell clones 
expanded roughly proportionately, regardless of T cell 
specificity. Greater than 99% of 5,128 clonotypes did not 
significantly change in proportion following treatment. 
Specifically, only 8 of 5,128 IT clones increased in a statis-
tically significant manner following treatment and 20 of 
5,128 clones significantly decreased as a portion of all T 
cells (expanded/contracted clones determined by beta-
binomial test with p value<0.01; see Methods and online 
supplemental figure 4).

While the aforementioned approach quantified T cells 
of unknown specificity, we also sought to quantify cancer-
specific T cells in pretreatment and post-treatment 
tumors. This was done by annotating the bulk TCRseq 
data with TCR sequences of known specificity derived 
from CITEseq and MHC multimers. This analysis revealed 
that cancer-specific CD8 T cells expanded from 0.39% of 
all cells in the TME prior to STING agonism to 0.93% 
of all cells in the TME after agonism. However, this was 
again largely driven by non-specific T cell expansion as 
11.7% of T cells in the TME before STING agonist treat-
ment and 7.2% of T cells after treatment were specific 
for the B*37:01 MCPyV epitope (figure 3C). Individual 
cancer-specific T cell clones did undergo some dynamic 
changes with 1 of 12 cancer-specific clones expanding 
following STING treatment and 2 of 12 contracting as 
a portion of all T cells (online supplemental figure 4). 
Cancer-specific T cells were long-lived in the blood and 
were detected 1 year after treatment (at the time of recur-
rence) at frequencies similar to pretreatment (0.04% of 
all peripheral blood mononuclear cells (PBMC)).

Cancer-specific CD8 T cells exhibit characteristics of 
exhaustion
We next sought to phenotype cancer-specific T cells in 
the tumor and blood. Unbiased clustering of scRNAseq 
of CD8 T cells yielded clusters of memory, naïve, progen-
itor exhausted, terminal exhausted, two effectors, and 
two gamma delta populations (figure 4A and B). Expres-
sion of stem-like and memory genes was higher in CD8 
T cells in blood, while genes associated with exhaustion 
were higher in tumor tissues and highest in cancer-
specific T cells (figure 4C). Cancer-specific CD8 T cells in 
tumors were largely confined to the terminally exhausted 
population defined by high expression of PDCD1 (PD-1) 
and ENTPD1 (CD39) (figure  4B and D). The propor-
tion of IT cancer-specific CD8 T cells in the terminally 
exhausted population decreased slightly following 
STING agonism, but low numbers of cancer-specific 
CD8 T cells in the pretreatment time point limited these 
analyses (figure 4D). To circumvent the low capture effi-
ciency of scRNAseq, flow cytometry was subsequently 
used as a higher throughput technique. These data show 
high expression of TOX, TCF7 and PD-1 proteins in IT 
cancer-specific CD8 T cells (99% PD-1+, 99% TOX+, 14% 
TCF1+, in pretreatment samples, figure  4E). This was 
unchanged following STING agonism suggesting that 
treatment did not induce lasting phenotypic changes in 
IT cancer-specific CD8 T cells.

MCC cancer cells are STING deficient
To study the effects of IT ADU-S100 on cancer, immune 
and stromal cells in the TME, we first analyzed STING 
expression in the TME by performing multiplexed 
immunohistochemistry (mIHC) on the studied patient’s 
tumor specimen. Previous studies of STING in MCC have 
suggested that this pathway is deficient in VP-MCC.23 We 
confirmed that the STING protein was indeed absent in 
the MCC cancer cells, with mIHC staining showing STING 
expression in immune and stromal cells, but an absence of 
STING protein in cancer cells (figure 5A). This pattern of 
STING expression was then confirmed broadly in further 
staining of 88 MCC tumors from 68 unique patients (55 
VP, 13 VN), which similarly showed an absence of STING 
expression in cancer cells (figure 5B).

The absence of STING protein in cancer cells suggests 
that the downstream effects of STING-agonism using 
ADU-S100 are likely mediated by effects on the non-
cancer cells rather than the MCC cancer cells in the TME. 
To independently confirm that MCC cells do not respond 
to ADU-S100 treatment, four VP-MCC cell lines were 
treated with increasing doses of ADU-S100 (figure 5C). 
Treatment did not induce the production of interferon 
beta (a downstream target of STING activation) in MCC 
cell lines, but led to the production of interferon beta 
in control monocytic THP-1 cells (figure  5C). More-
over, none of the MCPyV-driven MCC cell lines that were 
tested produced detectable amounts of STING protein 
(figure 5C).
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Figure 3  Intralesional STING treatment increases cancer-specific intratumoral T cell frequency. (A) Schematic of approach to 
quantifying frequency of MCPyV-specific CD8 T cells in tumor and blood specimens. Tumor or blood specimen were stained 
with DNA oligo and fluorophore labeled MHC tetramers and CITEseq with V(D)J seq was performed to identify specificity of 
TCRs. In parallel, beta-TCRseq was performed on tumor and blood specimens to quantify frequency of TCR clonotypes. (B) 
Gating of MCPyV-specific CD8 T cells via CITEseq. All cells with a single productive alpha and single productive beta TCR are 
shown. Cells with identical TCR sequences were grouped as clonotypes. X axis represents the median counts of CD8 antibody 
for each clonotype and y axis represents the median counts of an HLA-B*37:01 multimer containing a T antigen peptide. (C) 
Frequency of T cell clonotypes in tumor and blood before and after intralesional STING agonism. Alluvium plot where each 
alluvium represents and individual T cell clonotype. Clonotypes known to be MCPyV-specific are green. MCPyV-specific CD8 
T cells were present in tumor and blood of patient. CITEseq, feature barcoding; HLA, human leukocyte antigen; MCPyV, Merkel 
cell polyomavirus; MHC, major histocompatibility complex; PBMC, peripheral blood mononuclear cells; STING, stimulator of 
interferon genes; TCR, T-cell receptor; tx, treatment; V(D)J, variable–diversity–joining.
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Cancer cells upregulate HLA following IT STING agonism
To investigate the mechanisms of anticancer immune 
responses following STING agonism, we investigated the 
expression of genes associated with antigen processing 
and presentation (figure  6A). MCC cancer and non-
cancer cells were isolated in silico (online supplemental 
figure 5) and a gene set of 18 genes associated with antigen 
presentation was used to measure this pathway in aggre-
gate. A 49% increase in this gene signature was observed 
in cancer cells following STING agonism (p<10−16). A 
more modest 4% increase was observed in non-cancer 
cells in the TME (p=0.016) with higher expression of 
antigen presentation genes in non-cancer cells than in 
cancer cells.

Further analyses of these genes showed that most of 
this increase was driven by beta-2 microglobulin (online 
supplemental figure 5), which was significantly upregu-
lated in cancer cells following STING treatment (p<10−16; 
figure 6B). However, no remarkable change was observed 
in other cells in the TME. Upregulation of HLA-I was 
validated at a protein level via fluorescent activated cells 
sorting (FACS), which showed 1.8% of cancer cells posi-
tive for HLA-I prior to STING treatment compared with 
8.2% following STING treatment. Consistent with these 
findings, we observed increases in genes associated with 
interferon gamma or interferon alpha receptor signaling 
in most cell types in the TME following STING agonism 
(online supplemental figures 6A&B) suggesting that 
these cytokines were more active in the TME after STING 
agonism.

DISCUSSION
STING agonists have shown great promise in preclinical 
models.3 24 25 However, clinical trials have shown limited 
early efficacy with objective response rates reported 
between 2% and 10%.10 11 It is of note that 2 of 4 (50%) 
patients with MCC treated on two large trials of ADU-S100 
(NCT02675439; NCT03179236) experienced objective 
responses compared with 12 of 149 (8%) patients with 
non-MCC. Intrigued by the seemingly higher response 
rate in MCC, we performed exhaustive biomarker studies 
on a patient with metastatic MCC tumors that were refrac-
tory to anti-PD-L1 therapy. This patient with numerous 
(>10) metastatic tumors received only two IT injections of 
STING-agonist (ADU-S100) in their lower extremity plus 
systemic anti-PD-1 therapy and experienced a durable 
objective response in both injected and non-injected 
(distant) lesions. Regression of cancer cells in the TME 
was accompanied by a concomitant increase in the 
proportion of inflammatory cells, likely through cytokine 
production by non-cancer (immune) cells in response to 
STING-agonism.

Durable objective response, including abscopal 
tumor regression in non-injected lesions, in our patient 
suggested that STING-agonism in the injected tumor facil-
itated a systemic adaptive immune response. To further 
interrogate this, we used a panel of MCPyV-specific 

HLA-I multimers to leverage the viral etiology of this 
patient’s tumor to study cancer-specific T cells. Indeed, 
we observed a 2.4-fold increase in cancer-specific T cells 
in the TME following STING agonism. Using scRNAseq 
and FACS to further determine the characteristics of this 
expansion, we found that 93% of cancer-specific CD8 T 
cell clonotypes in the tumor following STING agonism 
had at least one cell detected in the pretreatment tumor. 
This suggests that priming of naïve T cells or recruitment 
of peripheral T cells may not have been a major driving 
factor in our patient’s anticancer immune response. 
Furthermore, minimal changes were detected in cancer-
specific T cell phenotype or exhaustion status suggesting 
that a reversal of CD8 T cell exhaustion was also not a 
major mechanism here. We did however note an increase 
in HLA-I positive cancer cells from 1.8% before treatment 
to 8.2% after treatment consistent with ADU-S100 upreg-
ulating antigen presentation in cancer cells. Since disrup-
tion of the antigen-presentation pathway is a well-known 
immune evasion mechanism in MCC, this may have 
been relevant to the successful clinical response in our 
patient.26–29 STING agonism may be a potentially prom-
ising approach to overcome this particular mechanism of 
immune evasion and improve the visibility of cancer cells 
to the immune cells in PD-(L)1 refractory MCC tumors.

We then asked if STING agonism may be acting directly 
on the STING pathway in the MCC cancer cells. Since a 
recent in vitro study had suggested that MCC tumors are 
likely STING deficient,23 we examined STING expression 
by mIHC in our patient treated with ADU-S100 and found 
STING expression to be absent in the MCC cancer cells, 
but intact in the non-cancer (immune) cells. We then veri-
fied the lack of STING expression in MCC cancer cells in 
a large independent patient cohort (88 MCC tumors in 
68 patients, including both VP and VN MCC). It has been 
proposed that inactivation of STING is an important part 
of immune evasion by MCPyV, a DNA virus. Indeed, the 
Leu-X-Cys-X-Glu (LxCxE) motif that inactivates STING in 
adenovirus and human papillomavirus30 is also present in 
the MCPyV large T antigen.31

Murine studies of STING’s role in anticancer immunity 
have shown that STING activity is vital in dendritic cells, 
but largely dispensable in cancer cells.6 8 These dendritic 
cells would release interferons following STING signaling, 
which in turn upregulates HLA-I on cancer cells, recruits 
immune cells into the tumors, stimulates adaptive immu-
nity and mediates tumor regression. We observed a high 
portion of plasmacytoid dendritic cells (pDC) in the 
treated patient’s tumor (2.7% of all cells in the TME prior 
to treatment). This is compared with only 0.1% (median) 
of cells expressing pDC markers in a prior study of 22 
MCC tumors.32 It is plausible that a relative abundance 
of pDC in the TME may predict success with IT STING 
agonism, and future biomarker studies in trials of STING 
agonists should investigate this further.

Although initial trials of STING agonists have yielded 
relatively low response rates; here, we show that these 
agents with anti-PD-1 therapy can lead to durable immune 
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Figure 6  MCC cancer cells upregulate HLA following STING agonism. (A) scRNAseq data showing upregulation of antigen 
presentation genes following STING agonism on cancer cells, cancer or non-cancer cells identified in silico. Antigen 
presentation score calculated using 16 genes involved in the HLA-I antigen presentation pathway. (B) B2M upregulation in 
cancer cells but not non-cancer cells following STING agonism. (C) Quantification of HLA-I and PD-L1 expression on cancer 
cells via flow cytometry. Each data point represents one of two technical replicates. (D) FACS plot of HLA expression (left) 
or PD-L1 expression (right) on cancer cells before and after IT STING agonist treatment. T-tests with Bonferroni multiple 
comparison testing used for statistical significance. P value key: ns=p>0.05, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. B2M, 
beta-2 microglobulin; FACS, fluorescent activated cells sorting; FMO, fluorescence minus one; HLA, major histocompatibility 
complex; IT, intratumoral; MCC, Merkel cell carcinoma; MHC, major histocompatibility complex; ns, not significant; PD-L1, 
programmed death-ligand 1; scRNAseq, single-cell RNAseq; STING, stimulator of interferon genes.
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responses in the PD-(L)1 refractory setting. We show that 
a successful anticancer immune response via STING 
agonism does not need STING expression in the targeted 
cancer cells. Our results raise the possibility that STING 
agonism could be effective in tumors that already are infil-
trated by inflammatory cells in the TME, but are evading 
immune detection via HLA-I downregulation. Further 
in vivo studies are required to discern the mechanism(s) 
underlying successful responses to STING agonism.

METHODS
Study design and participants
Samples were collected with informed consent for 
research use and were approved by the Fred Hutch 
Cancer Center institutional review board, in accordance 
with the Declaration of Helsinki (2013) as part of obser-
vational registry studies focusing on MCC (Fred Hutch 
Cancer Center IRB#6585). This patient presented to our 
institution as part of the standard of care. On progres-
sion on anti-PD-L1, they were evaluated and enrolled in a 
clinical trial with ADU-S100 and spartalizumab antibody10 
(NCT03179236). ADU-S100 was administered at 3200 
mcg/injection every 4 weeks. One lesion was injected in 
the first cycle, and a separate lesion was injected in the 
second cycle. Tumor biopsy was taken 6 weeks after the 
first lesion was injected. Blood was collected before and 
1 year after treatment. Every 4 weeks, the patient received 
spartalizumab administered at a dose of 400 mg until 
progression.

Blood collection and processing
Heparinized whole blood from patients with MCC 
was processed at the Specimen Processing Lab (Fred 
Hutchinson Cancer Center). PBMC were isolated by 
routine Ficoll density gradient centrifugation and cryo-
preserved in liquid nitrogen.

Tumor digestion processing
Fresh MCC tumor specimens from needle cores, punch 
biopsies, or surgical excisions were enzymatically digested 
as described.33 All single-cell suspensions were cryopre-
served in freezing medium (50% human serum (Valley 
Biomedical), 40% RPMI (Corning), and 10% DMSO 
(Sigma-Aldrich)) in liquid nitrogen.

Flow cytometry
Frozen pretreatment and post-treatment PBMC and 
tumor digest samples were analyzed using flow cytom-
etry as described elsewhere.34 Briefly, tubes were thawed 
at 37°C and mixed with complete media. DNAse I (10 
units/ml) was added and samples were left to rest for an 
hour. Cells were counted and divided into 1–3 million 
cells per tube. After two washes with phosphate-buffered 
saline (PBS), dasatinib (100 nM) and live dead dye 
(Live dead Blue; Thermo Fisher) were added and the 
samples were incubated at 37°C for 10 min. HLA-I multi-
mers were added, followed by cell surface receptor 

antibodies (BV605 conjugated anti-E selectin (68-5 H11; 
BD), BUV395 conjugated anti-CD56 (NCAM16.2; BD), 
BUV615 conjugated anti-PD1 (EH12.1; BD), BV650 
conjugated anti-PDL1 (29E.2A3; BioLegend), PE-Cy7 
conjugated anti-CLA (HECA-452; BioLegend), BV785 
conjugated anti-CD163 (GHI/61; BioLegend), BUV805 
conjugated anti-CD4 (SK3; BD), BV570 conjugated 
anti-CD8 (RPA-T8; BioLegend), BV711 conjugated anti-
HLA-DR (L243; BioLegend), APC-Fire750 conjugated 
anti-CD123 (S18016F; BioLegend), BUV563 conju-
gated anti-CD14 (MφP9; BD), BB700 conjugated anti-
CD19 (SJ25C1; BD), BUV496 conjugated anti-HLA-ABC 
(W6/32; BD), V450 conjugated anti-CD66b (G10F5; BD), 
BUV737 conjugated anti-CD86 (2331 (FUN-1); BD), 
BV510 conjugated anti-CD33 (WM53; BioLegend), BV480 
conjugated anti-CD45 (HI30; BD), BV750 conjugated 
anti-CD34 (563; BD), APC conjugated anti-CD11c (Bu15; 
BioLegend)) were then added and incubated for 30 min 
at room temperature. Samples were washed two times 
with autoMACS running buffer (Miltenyi) and perme-
abilized using the Foxp3/transcription factor staining 
buffer set (eBioscience), followed by two more washes 
with the permeabilization buffer. The intracellular anti-
bodies ((PE conjugated anti-TOX (TXRX10; Invitrogen), 
AF488 conjugated anti-TCF7 (S33-966; BD), PE-CF594 
conjugated anti-STING (T3-680; BD), AF532 conjugated 
anti-CD3 (UCHT1; Invitrogen), PE-Cy5 conjugated 
anti-FoxP3 (PCH101; Invitrogen), AF700 conjugated 
anti-Ki67 (Ki-67; BioLegend)) were then added and incu-
bated for 1 hour at room temperature, followed by two 
washes with permeabilization buffer and fixation in 1% 
paraformaldehyde. Antibody capture beads or amine-
reactive beads (Thermo Fisher) were used for compensa-
tion. The stained cells were then analyzed using the Cytek 
Aurora spectral analyzer at the University of Washington’s 
Department of Immunology Cell Analysis Facility. Spec-
tral unmixing was performed using SpectroFlo software 
and the initial gating, selecting for single cells, lympho-
cytes, and live cells, was performed in FlowJo V.10 (FlowJo 
LLC; online supplemental figure 7). Further analysis was 
carried out in R.

scRNAseq sample preparation
Frozen tubes were thawed at 37°C, followed by the drop-
wise addition of complete media up to a total volume 
of 32 mL. Cells were then washed two times with PBS, 
counted and transferred to FACS tubes (Fisher Scien-
tific). Live dead stain was then added (FVS780; BD Biosci-
ences), followed by a blocking buffer to bring samples to 
0.5% BSA, 5% TruStain FcX buffer (BioLegend), 100 nM 
dasatinib, and 50 µg salmon sperm. Samples were then 
incubated on ice for 10 min. DNA oligo-labeled HLA 
multimers were then added to patients with matched 
HLA types. Hashtag antibodies were added to identify 
sample origin in subsequent pooling steps. Fluorophore-
labeled antibodies were then added followed by DNA 
oligo-labeled antibodies. Cells were then incubated on ice 
for 30 min and washed three times. Live cells were sorted 
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using an Aria II Cell sorter (BD Biosciences) into cold 
complete media, pooled, and immediately prepared for 
CITEseq (see below).

scRNAseq and scV(D)J-seq library preparation and 
sequencing
Single-cell suspensions (above) were loaded into the 
appropriate microfluidic chip (chip G; 10x Genomics) 
in a chromium controller (10x Genomics). Resulting 
cell suspensions then went through a library preparation 
process for scRNAseq along with paired scV(D)J-seq for 
TCR using the 5’ transcriptome kit with feature barcoding 
(V.1.1; 10x Genomics) following the manufacturer’s 
guidelines. The complementary DNA libraries were then 
sequenced using a NovaSeq instrument (Illumina) with 
2×92 base pair paired-end reads aiming for an average of 
20,000 reads per cell.

Beta TCR receptor profiling
Frozen PBMC or formalin-fixed paraffin-embedded 
(FFPE) tumor biopsy material (20 µm thick molecular 
curls) were used for DNA extraction using QIAamp DNA 
Blood Mini Kit or QIAamp DNA FFPE tissue kit respec-
tively (Qiagen). Resulting samples were submitted to 
Adaptive Biotechnologies for TCRβ sequencing and 
normalization as previously described.35

Immunohistochemistry
FFPE tissues were stained on a Leica BOND RX auto-
stainer using the Akoya Opal Multiplex IHC assay (Akoya 
Biosciences, Menlo Park, CA) with the following changes: 
Additional high stringency washes were performed after 
the secondary antibody and Opal fluor applications using 
high-salt TBST (0.05M Tris, 0.3M NaCl, and 0.1% Tween-
20, pH 7.2–7.6). TCT was used as the blocking buffer 
(0.05M Tris, 0.15M NaCl, 0.25% Casein, 0.1% Tween 
20, pH 7.6±0.1). All primary antibodies were incubated 
for 1 hour at room temperature. Antibodies against the 
following targets were used for staining: CD56 (clone 
123C3.D5; Bio SB), CD8 (clone C8/144B; DAKO), STING 
(clone SP338; Abcam) CD45 LCA (clone 2B11+PD7/26; 
DAKO), FoxP3 (clone 236A/E7; eBioscience), CD163 
(clone ERP324; BioSB), CD68 (clone PG-M1; DAKO).

Slides were mounted with ProLong Gold and cured for 
24 hours at room temperature in the dark before image 
acquisition at 20x magnification on the Akoya PhenoIm-
ager HT Automated Imaging System. Images were spec-
trally unmixed using Akoya inForm software.

HLA multimer preparation
HLA tetramers used for scRNAseq were created using 
HLA-I easYmers (ImmunAware). BV421-labeled strepta-
vidin (BioLegend) was used to prepare tetramers for 
flow cytometry experiments. PE or APC and DNA oligo 
nucleotide-labeled streptavidins (BioLegend) were used 
for scRNAseq experiments. Tetramers were titered using 
samples of known positivity. Tetramers for six epitopes 
were created matching this patients HLA typing: Influ-
enza A (HLA A*02:01 containing GILGFVFTL peptide), 

EBV (HLA A*02:01 containing GLCTLVAML peptide), 
CMV (HLA A*02:01 containing NLVPMVATV peptide), 
and three MCPyV epitopes (HLA A*02:01 containing 
KLLEIANPC peptide; HLA A*11:01 containing 
RSGGFSFGK peptide and HLA A*37:01 containing 
KEWWRSGGF peptide).

Flow cytometry data analysis
Flow Cytometry Standard (FCS) files of live cells were 
loaded into a gating set object in R using flowWorkspace 
(V.4.6.0). Data from fluorescent markers was transformed 
using the bi-exponential function. Fluorescent minus one 
samples were used to draw minimum gates at the 99th 
percentile. Gates were adjusted upward as appropriate 
based on visual inspection. Uniform Manifold Approxi-
mation and Projection (UMAP) dimensionality reduc-
tion was performed using uwot (V.0.1.14). Clustering 
was performed using PhenoGraph (V.0.99.1). Visualiza-
tion was performed using ggplot2 (V.3.4.0) or FlowJo 
(V.10.8.1).

scRNAseq data analysis
Data was analyzed as described elsewhere.34 Briefly, the 
raw sequencing reads were aligned to the hg38 genome 
using Cell Ranger V.3.1. The filtered count matrices of 
transcripts and feature barcoding counts were then 
loaded into an R (V.4.1.2) SingleCellExperiment object 
for further analysis. The sample hash deconvolution was 
carried out using DropletUtils (V.1.14.2) and doublet 
detection and removal were done through scds (V.1.10.0) 
in conjunction with the doublets detected during hash 
deconvolution.

Low-quality cells with fewer than 800 transcript reads, 
fewer than 250 genes detected, or more than 10% of 
mitochondrial DNA were excluded from the analysis. 
The cells were size-normalized and log-transformed using 
scuttle (V.1.4.0).The cells from different runs were then 
integrated using the batchelor package (V.1.10.0). UMAP 
dimensionality reduction was performed with the inte-
grated values. Clustering was done using the integrated 
transcript values and feature barcoding reads through 
the Walktrap algorithm on the nearest neighbor graph 
(scran V.1.22.1). The number of clusters was varied by 
adjusting the number of nearest neighbors (k) during 
graph construction, followed by analysis using clustree 
(V.0.5.0).

Clusters were then labeled as the major cell lineages of 
CD4 T cells, CD8 T cells, B cells, myeloid cells, erythro-
cytes, NK cells, and cancer cells through the expression of 
key genes, including MS4A1, CD19, CD4, CD8A, CD3E, 
CD3D, GZMB, NCAM1, HLA-DRA, PTPRC, NKG7, and 
the MCPyV oncoproteins. The cluster labels were vali-
dated by investigating the portion of the cluster with 
productive TCR rearrangements. The cell lineages were 
isolated in silico and split into major lineages, and dimen-
sionality reduction and clustering were reperformed as 
described above. Clonotypes (TCRs) were identified as 
MCPyV-specific if the clonotype bound more than a mean 
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of 40 CD8 antibodies, less than a mean of 40 CD4 anti-
bodies and more than a mean of 244 multimer molecules. 
Of note, six clonotypes bound sufficient levels of CD8 and 
multimer but were excluded due to high levels of CD4 
and were excluded from further analysis due to concerns 
for non-specific binding.

The cells were scored for the expression of HLA and 
interferon gene sets using the UCell (V.1.99.1) package. 
Plotting was performed using scater (V.1.22.0), Seurat 
(V.4.3.0), or ggplot2 (V.3.4.0).

Gene sets
Genes associated with antigen presentation were taken 
from the antigen presentation and processing data set 
from Biocarta.36 HLA genes B, C, E and F not originally 
included in the set were added for completeness. Genes 
associated with interferon alpha or gamma signatures 
were taken from the respective hallmark gene sets.21

ADU-S100 stimulation
To assess MCC cell lines response to STING agonism, the 
virus-positive cell lines WaGa, MKL1, MKL2 and MS-1 
as well as a human monocytic cell line (THP1; positive 
control) were treated with ADU-S100. 100,000 cells were 
plated in 0.25 mL of media. ADU-S100 (MedChemEx-
press) was added to bring final concentrations to 100, 
20, 4, 0.8, or 0.016 micromolar. The concentration of 
interferon beta was measured in media 48 hours later via 
ELISA (R&D Systems). All samples run in triplicate.

Western blot
WaGa, MKL1, MKL2, MS-1 and THP-1 cells were seeded 
in T75 flasks and maintained at 37°C in a humidified incu-
bator with 5% CO2. Cells were pelleted and lysed in ice-cold 
buffer containing 150 mM NaCl, 1.0% IGEPAL CA-630, 
0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris (pH 
8.0) and protease/phosphatase inhibitor cocktail (1:100; 
Cell Signaling Technology, USA). Soluble fractions from 
prepared cell lysates were collected after centrifugation 
at 13,000 rpm for 10 min at 4°C. Next, normalized cell 
lysates (quantified using Bradford assay) were separated 
by 10% Sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE), transferred onto polyvinylidene 
fluoride (PVDF) membranes, and immunoblotted with 
STING (1:1,000; Cell Signaling Technology, USA) / 
β-actin (1:10,000; Sigma-Aldrich, USA) primary antibody 
and anti-rabbit (1:2,500; Cell Signaling Technology, USA) 
/ anti-mouse (1:2,500; Cell Signaling Technology, USA) 
horseradish peroxidase-conjugated secondary antibody 
respectively. Blotted proteins were visualized on x-ray 
films incubated with a high-sensitivity enhanced chemilu-
minescence (ECL) reagent (Sigma-Aldrich, USA).

Statistics
T-tests were used to compare differences between two 
groups unless otherwise noted. When comparing more 
than two groups, the non-parametric Kruskal-Wallis test 
or one-way analysis of variance was used as indicated. 
Multiple hypothesis testing was done with the Bonferroni 

method unless noted differently. Fisher’s exact test was 
used to evaluate differences between two categorical vari-
ables. Differentially abundant T cell clones (beta-TCRseq) 
were identified using a two-sided beta-binomial test with 
an alpha value of 0.01 as calculated per the Adaptive 
Analyzer platform. All other statistical analysis was carried 
out using R V.4.1+ or GraphPad Prism V.9.5.
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