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ABSTRACT
Background  Phenotypic heterogeneity of melanoma 
cells contributes to drug tolerance, increased metastasis, 
and immune evasion in patients with progressive disease. 
Diverse mechanisms have been individually reported to 
shape extensive intra-tumor and inter-tumor phenotypic 
heterogeneity, such as IFNγ signaling and proliferative to 
invasive transition, but how their crosstalk impacts tumor 
progression remains largely elusive.
Methods  Here, we integrate dynamical systems modeling 
with transcriptomic data analysis at bulk and single-cell 
levels to investigate underlying mechanisms behind 
phenotypic heterogeneity in melanoma and its impact on 
adaptation to targeted therapy and immune checkpoint 
inhibitors. We construct a minimal core regulatory network 
involving transcription factors implicated in this process 
and identify the multiple ‘attractors’ in the phenotypic 
landscape enabled by this network. Our model predictions 
about synergistic control of PD-L1 by IFNγ signaling 
and proliferative to invasive transition were validated 
experimentally in three melanoma cell lines—MALME3, 
SK-MEL-5 and A375.
Results  We demonstrate that the emergent dynamics 
of our regulatory network comprising MITF, SOX10, 
SOX9, JUN and ZEB1 can recapitulate experimental 
observations about the co-existence of diverse phenotypes 
(proliferative, neural crest-like, invasive) and reversible 
cell-state transitions among them, including in response 
to targeted therapy and immune checkpoint inhibitors. 
These phenotypes have varied levels of PD-L1, driving 
heterogeneity in immunosuppression. This heterogeneity 
in PD-L1 can be aggravated by combinatorial dynamics of 
these regulators with IFNγ signaling. Our model predictions 
about changes in proliferative to invasive transition and 
PD-L1 levels as melanoma cells evade targeted therapy 
and immune checkpoint inhibitors were validated in 
multiple RNA-seq data sets from in vitro and in vivo 
experiments.
Conclusion  Our calibrated dynamical model offers a 
platform to test combinatorial therapies and provide 
rational avenues for the treatment of metastatic 
melanoma. This improved understanding of crosstalk 
among PD-L1 expression, proliferative to invasive 
transition and IFNγ signaling can be leveraged to improve 
the clinical management of therapy-resistant and 
metastatic melanoma.

INTRODUCTION
Cutaneous malignant melanoma (MM) arises 
from fully differentiated, pigment-producing 
melanocytes. It is a deadly and highly aggres-
sive form of skin cancer infamous for its high 
metastatic potential. It carries high muta-
tional burden and is commonly driven via 
activating mutations in BRAF and NRAS that 
activate constitutive signaling of mitogen-
activated protein kinase (MAPK).1 The advent 
of targeted BRAF/MEK inhibitors has been a 
key breakthrough in the clinical management 
of advanced melanoma. In 2011, vemurafenib 
was the first FDA-approved drug to target—
BRAF V600E, a key mutation that caused 
constitutive activation of MAPK pathway and 
hyperproliferation.2 3 However, metastasis in 
melanoma is largely mediated by phenotypic 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ The role of individual mechanisms such as IFNγ 
signaling and proliferative to invasive transition in 
enabling phenotypic heterogeneity in melanoma has 
been reported. But, an understanding of how these 
mechanisms interact and impact immune evasion in 
tumor progression remains limited.

WHAT THIS STUDY ADDS
	⇒ This study integrates dynamical systems model-
ing with transcriptomic analysis to determine how 
emergent dynamics of regulatory networks con-
necting IFNγ signaling and proliferative to invasive 
transition enable phenotypic switching and hetero-
geneity, and synergistic control of PD-L1 levels.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ These findings offer a promising in silico mech-
anistic platform validated by in vitro and in vivo 
experimental data to identify adaptive resistance 
strategies of metastatic melanoma, and test com-
binatorial therapies that can improve the manage-
ment of therapy-resistant disease.
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plasticity and cellular heterogeneity rather than genetic 
mutation-driven phenomena.4 5 Melanoma samples 
exhibit marked intratumor and intertumor heteroge-
neity, that is, they are composed of diverse phenotypic 
subpopulations, each with their characteristic molecular 
profiles and functional attributes of proliferation rate, 
drug susceptibility and metastatic potential. Reversible 
bidirectional switching between a proliferative cell state 
and a slow-cycling invasive state can promote metastasis 
in vivo.5 Such proliferative to invasive transition (PIT) 
and its reverse invasive to proliferative transition (IPT) 
is often governed by dynamic alterations in the local 
microenvironment,6 including therapy-induced adaptive 
cellular changes.7 8 Recent characterization of melanoma 
cell lines and tumor samples at a single-cell level have 
indicated that phenotypic heterogeneity in melanoma 
extends beyond the binary proliferative-invasive para-
digm, and cells can dynamically acquire a spectrum of 
phenotypes.9–11 Such plasticity and heterogeneity subse-
quently facilitate resistance to clinical interventions12 
(chemotherapy, immunotherapy, targeted therapy, etc), 
posing major challenges in designing effective therapies 
against advanced melanoma.13

Melanoma is among the most sensitive malignancies 
to immune modulation. Immune checkpoint proteins 
expressed on cancer cell surface such as PD-L1 can bind 
to inhibitory PD-1 receptors expressed on activated T 
cells.14 PD-L1 overexpression (OE) can accelerate CD4+T 
effector cell exhaustion15 or can diminish CD8+T cell 
cytotoxicity.16 High levels of PD-L1 in cancer cells can 
also directly confer resistance to T cell-mediated death 
without specifically relying on PD-1-dependent inhi-
bition of T cells.14 17 In melanoma, PD-L1 levels have 
been reported as an independent prognostic factor.18 
Another breakthrough in treating metastatic melanoma 
has been the use of immunotherapy. Pembrolizumab 
was the first FDA-approved PD-L1/PD-1 blocking drug to 
treat advanced melanoma.19 Importantly, in melanoma 
cell lines, heterogeneity in PD-L1 expression levels were 
observed to be independent from any driver mutation 
in MAPK or PI3K pathway.20 21 Such heterogeneity in 
PD-L1 expression profiles has been reported within and 
between patients,22 and can enable resistance to immu-
notherapy via non-mutational mechanisms.23 Moreover, 
recent experiments revealed an association between 
PD-L1 expression levels and cellular dedifferentiation to 
an invasive phenotype,21 thus indicating how phenotypic 
plasticity has the potential to thwart immunotherapy as 
well. The mechanistic underpinnings driving the emer-
gence of such non-genetic heterogeneity remain largely 
elusive. Therefore, to better design therapeutic strategies, 
the dynamics of phenotypic plasticity during PIT and its 
impact on PD-L1 expression heterogeneity needs to be 
better understood.

Here, we have identified a minimal gene regulatory 
network (GRN) that can recapitulate the phenotypic 
heterogeneity along the proliferative-invasive spectrum 
and its impact on PD-L1 heterogeneity. We mathematically 

modeled the emergent dynamics of this regulatory 
network, consisting of key proliferative (MITF, SOX10) 
and invasive players (JUN, SOX9, ZEB1) and integrating 
the literature-derived regulatory links among them. Our 
simulations performed for this network over a parameter 
ensemble reveal the existence of distinct phenotypes—
proliferative, invasive, neural crest-like and interme-
diate—as an outcome of the network topology. We then 
couple PD-L1 and one of its key regulators, IFNγ signaling 
to the network to elucidate the varying immune evasion 
traits along the proliferative-invasive axis. We observed 
that neural crest and invasive cells have greater propen-
sities to exhibit high PD-L1 levels with low IFNγ signaling 
compared with intermediate and proliferative cells. The 
PD-L1 levels of all the above-mentioned phenotypes can 
be further enhanced with high IFNγ signaling, which is 
indicative of their enhanced immune evasion potential. 
Moreover, cells can reversibly switch from a prolifera-
tive/low PD-L1 state to neural crest/high PD-L1 state or 
invasive/high PD-L1 state, showcasing dynamic changes 
in PD-L1 levels during dedifferentiation. We quantita-
tively analyze the coupling between expression levels of 
PD-L1, IFNγ signaling and proliferative-invasive status of 
melanoma cells to uncover a mechanistic understanding 
driving the patterns of PD-L1 heterogeneity in patient-
derived melanoma cells prior to and following anti-BRAF 
targeted therapy. Our model predictions are validated by 
extensive transcriptomic data analysis at both bulk and 
single-cell levels for publicly available melanoma RNA-seq 
data as well as via in vitro experiments in proliferative and 
neural crest-like cell lines. We show that drug resistance 
to targeted therapies and immune checkpoint inhibitors 
can occur due to pre-existing cell state heterogeneity or 
due to drug induced heterogeneity. Finally, we postulate 
how this improved understanding of crosstalk among 
PD-L1 expression, PIT and IFNγ signaling can be lever-
aged to improve clinical management of therapy-resistant 
and metastatic melanoma.

RESULTS
A core GRN explains the patterns of non-genetic heterogeneity 
along the proliferative-invasive axis in melanoma cells
Phenotypic plasticity in cancer cells is driven by a myriad 
of complex molecular interactions that drive coordi-
nated changes in molecular and functional aspects of 
various biological pathways. Identifying a minimal regu-
latory network that can represent many such experi-
mentally reported interactions and whose emergent 
dynamics can recapitulate the hallmark patterns of 
phenotypic plasticity and heterogeneity is, therefore, a 
first important step to elucidate systems-level behavior, 
while effectively approximating the biological system at 
hand. To examine the plasticity of melanoma cells along 
the proliferative-invasive axis, we identified a regulatory 
network that involves transcription factors implicated in 
a PIT—MITF, JUN, ZEB1, SOX10, and SOX9. MITF can 
drive the proliferative phenotype at least partly through 
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LEF1, and transactivate its own promoter.24 25 It can 
also suppress JUN, a regulator of the invasive cell state, 
through binding to its enhancer.26 Furthermore, JUN can 
suppress the activity of MITF directly and/or indirectly,26 
and self-activate transcriptionally through forming Jun/
ATF-227 heterodimers. Thus, MITF and JUN are engaged 
in mutual antagonism. Similarly, MITF and ZEB1 can 
form a ‘toggle switch’,28 such that MITF directly represses 
ZEB1,29 and ZEB1 can bind to the MITF promoter region 
and inhibit MITF.30 Similar to MITF and JUN, ZEB1 can 
autoactivate via multiple feedback loops.31 SOX10 has 
been reported in maintaining a proliferative state,32 but 
it has also been shown to promote invasive features in 
melanoma.33 34 SOX10 inactivation leads to SOX9 upreg-
ulation, and SOX9 can downregulate SOX10 expression 
by binding to SOX10 promoter, thus indicating mutual 
antagonism between them.32 SOX9 can also be involved 
in upstream enhancer mediated positive autoregulation.35 
Finally, SOX10 has been shown to activate the expression 

of MITF by directly binding to its promoter.36 37 Together, 
these interactions constitute a GRN incorporating the 
complex crosstalk among diverse players of PIT or its 
reverse IPT (figure 1A).

We simulated the dynamics of this GRN using the 
random circuit perturbation (RACIPE) framework to 
identify the steady state expression patterns that repre-
sent the ‘possibility space’ of phenotypes enabled by this 
GRN. The RACIPE framework simulates the dynamics 
of a GRN through a set of coupled ordinary differential 
equations (ODEs), with each ODE for a node in the GRN, 
and kinetic parameters corresponding to production, 
degradation and regulation being sampled from biologi-
cally relevant ranges.38 The ODEs are then solved across 
diverse parameter sets and initial conditions to identify 
the ensemble of steady states. This ensemble is indicative 
of possible phenotypes allowed by the corresponding 
network topology. For the GRN considered here, we 
first plotted the ensemble of steady state solutions as a 

Figure 1  Non-genetic heterogeneity along the proliferative-invasive spectrum enabled by an underlying gene regulatory 
network in melanoma. (A) Gene regulatory network to model the proliferative-invasive heterogeneity in cell states in melanoma. 
The red hammerheads represent inhibitory links, and the black arrows represent activating connections. (B) Hierarchically 
clustered heatmap of simulated steady states allowed by the gene regulatory network and qualitative classification of the four 
emergent cell states. (C) Scatter plot showing all the steady states projected onto the proliferative-invasive plane defined by 
sum of expression of MITF, SOX10 (proliferative score) and those of SOX9, ZEB1 and JUN (invasive score). The steady states 
are colored by cluster labels obtained from hierarchical clustering. (D) Scatter plot of the association between the proliferative 
(MITF+SOX10) and invasive (SOX9+ZEB1+JUN) scores for the CCLE group of skin cancer cell lines (top). Scatter plot showing 
association between the proliferative (MITF+SOX10) and invasive (SOX9+ZEB1+JUN) scores for clinical samples from TCGA 
cohort of SKCM patients (bottom). (E) Volcano plot for the results of meta-analysis of melanoma datasets, accounting for the 
associations between the proliferative and invasive scores; nnegative and npositive denote the number of datasets (out of 32) that are 
correlated negatively (Spearman correlation coefficient <−0.3; p<0.05) and positively (Spearman correlation coefficient >0.3; 
p<0.05) (left). Scatter plot for the comparisons of the proliferative-invasive correlations based on the five gene signature and the 
gold standard Verfaillie signatures. Points colored in red are datasets that show significant correlations in both metrics (right). (F) 
(i) Scatterplot of single cell RNA-Seq data showing each cell of each cell line projected on the proliferative-invasive plane based 
on the imputed expression of five modeled master regulators. For each cell line, the dominant phenotype is binarized and the 
corresponding abundances have been reported. (ii) Boxplots of cells categorized by the dominant binary phenotypes based 
on the five gene signature and their invasive (left) and proliferative (right) ssGSEA scores based on Verfaillie signatures. CCLE, 
cancer cell line encyclopedia; TCGA, The Cancer Genome Atlas.
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heatmap (figure  1B). On hierarchical clustering, we 
observed that the invasive genes JUN, ZEB1 and SOX9 
were largely coexpressed and so were the prolifera-
tive genes MITF and SOX10. Qualitatively speaking, 
this heatmap revealed four phenotypes—proliferative 
(MITFhi/SOX10hi), undifferentiated (SOX9hi with JUN 
and/or ZEB1 high), neural crest-like (SOX10hi with JUN 
and/or ZEB1 high) and intermediate (MITFhi/SOX9hi) 
(online supplemental figure S1A). Coexpression of 
SOX10 along with invasive markers, such as ZEB1 and/
or JUN, has been shown to be necessary to maintain the 
neural crest-like phenotype with invasive characteristics 
in development.39 40 To classify the ensemble of steady 
states into cellular phenotypes more systematically, we 
defined two scores: proliferative score (sum of z-normal-
ized gene expression values of proliferative master regu-
lators—MITF and SOX10) and invasive score (sum of 
z-normalized gene expression values of invasive marker 
genes—SOX9, JUN and ZEB1). We then projected all the 
steady state solutions onto a scatter plot of corresponding 
proliferative and invasive scores (figure  1C). The four 
phenotypes observed in the heatmap can also be reca-
pitulated as distinct clusters in this proliferative-invasive 
plane, with the proliferative and invasive scores showing a 
strong negative correlation (ρ=−0.837; p<10−5). Similarly, 
on coloring the steady states by a ‘neural crest-like score’ 
(z-normalized expression values of SOX10+JUN+ZEB1), 
we observed the neural crest-like phenotype present 
amidst the proliferative-invasive spectrum (online supple-
mental figure S1B). These phenotypes identified by 
our dynamical model are in accordance with previously 
reported multistage differentiation and dedifferentiation 
states, which define melanoma subtypes with the neural 
crest-like phenotype as an intermediate cell state between 
the terminal melanocytic proliferative state and the undif-
ferentiated invasive cell state.41

To cross-validate the observed trend from model simu-
lations, we analyzed a cohort of skin cancer cell lines 
included in the cancer cell line encyclopedia (CCLE)42 
(figure 1D; top). In support of the model simulations, we 
found that proliferative and invasive scores were strongly 
negatively correlated in the CCLE skin cancer cell line 
cohort (ρ=−0.558; p<10−5). This pattern is also reiterated 
in the primary tumor cohort from The Cancer Genome 
Atlas (TCGA) (ρ=−0.427; p<10−5) (figure  1D; bottom). 
Furthermore, in both CCLE and TCGA samples, we 
observed that the proliferative score defined based on 
MITF and SOX10 levels correlated strongly positively 
with the enrichment of a much larger gene set defined 
for proliferative status in melanoma.43 Similarly, the inva-
sive score derived from the model (defined as the sum of 
expression of SOX9, JUN and ZEB1) correlated strongly 
with the enrichment of the Verfaillie gene set used to 
define invasive status in melanoma (online supplemental 
file 1). These observations strongly suggest that the five 
genes involved in the GRN model seem sufficient to 
capture the major patterns in the proliferative and inva-
sive nature of melanoma samples, both for cell lines and 

patient tumors. As expected, the proliferative and inva-
sive scores defined based on Verfaillie gene expression 
signatures negatively correlated with each other in both 
CCLE and TCGA (online supplemental figure S1E), with 
the extent of antagonism similar to that seen using our 
five gene signature (figure 1D).

To ensure the reliability of the chosen five genes for 
our regulatory network, we compared the correlation 
of the five identified master regulators (MITF, SOX10 
for proliferative; JUN, ZEB1, SOX9 for invasive) against 
a distribution of correlation coefficients of random 
combinations of transcription factors (negative control) 
with the Verfaillie proliferative and invasive signatures 
in both CCLE skin cancer cell line group and TCGA 
SKCM patient cohort (online supplemental figure S2). 
We observed that the MITF-SOX10 pair and the JUN-
ZEB1-SOX9 triplet are generally more strongly correlated 
to the Verfaillie proliferative and invasive signatures, 
respectively, compared with any random combination 
of two or three transcription factors respectively in the 
CCLE and TCGA datasets (online supplemental figure 
S2A,B). This suggests that these sets of transcription 
factors are key drivers of proliferative-invasive phenotypic 
regulation in melanoma. Furthermore, we found that the 
trend remains consistent for the MITF-SOX10 pair even 
when the background reference distribution is created by 
sampling pairs of transcription factors exclusively from 
the Verfaillie proliferative gene list (online supplemental 
figure S2C,D). However, a similar analysis for the triplet 
of invasive genes did not show very strong trends and 
specificity in CCLE and TCGA datasets (online supple-
mental figure S2C,D). To improve the specificity of our 
analysis, we added TCF4 and IRF1 to the signature, as 
they were among the top correlated transcription factors, 
which significantly improved the observed trends (online 
supplemental figure S2E).

To provide further validation of our observations in 
the CCLE and TCGA cohorts, we analyzed 32 publicly 
available melanoma bulk transcriptomic datasets (online 
supplemental table S1) and observed a significant nega-
tive correlation (ρ<−0.3, p<0.05) between the defined 
proliferative and invasive score as the predominant trend 
(figure 1E; left). In 27 out of the 32 datasets, our prolif-
erative score defined based on our minimalistic GRN 
(MITF+SOX10) correlated positively with the Verfaillie 
proliferative score (online supplemental figure S3A). 
Similarly, in 16 out of 32 datasets, our invasive score 
(=SOX9+ JUN+ ZEB1) correlated positively with Verfaillie 
invasive score (online supplemental figure S3B). These 
results indicate that our minimal GRN is sufficient to 
capture the proliferative-invasive antagonism, observed 
across many datasets when compared against the well-
established Verfaillie proliferative and invasive signatures 
(figure 1E, online supplemental figure S3C). Finally, we 
estimated the strength of antagonism between prolifera-
tive and invasive scores vis-à-vis that between the Verfaillie 
proliferative and invasive gene signatures.43 We found 
that the anticorrelation between the two scores defined 
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based on our GRN is largely consistent (in 16 out of 32 
datasets) with the Verfaillie scores defined proliferative-
invasive spectrum (figure  1E; right). The antagonism 
between the proliferative and invasive scores, as well as 
the positive correlation between the invasive score and 
Verfaillie invasive signature in both TCGA and CCLE 
datasets, were also seen when using the updated invasive 
score (including IRF1, TCF4, SOX9, JUN, ZEB1) (online 
supplemental figure S3D,E). The updated invasive score 
also showed similar trends in meta-analysis of melanoma 
datasets as noted earlier (compare online supplemental 
figure S3F, i with figure  1E). Additionally, 25 out of 32 
datasets showed a positive correlation (ρ>0.3, p<0.05) 
between the updated five gene invasive score and the 
Verfaillie invasive score (online supplemental figure 
S3F ii). Thus, our model observations can recapitulate 
the patterns of phenotypic heterogeneity across many 
publicly available melanoma datasets, including in vitro, 
in vivo and patient sample data sets.

To analyze phenotypic heterogeneity at a single-cell 
level in melanoma with respect to the five genes in the 
core GRN, we analyzed single-cell transcriptomic profiles 
of patient-derived melanoma cultures (GSE134432) along 
the proliferative-invasive axis.9 We projected 39,263 cells 
belonging to 10 genetically homogeneous patient-derived 
MM lines on the proliferative-invasive plane (figure 1F,i). 
A density histogram for the expression of the five core 
genes, fitted with a kernel density estimate, revealed a 
largely bimodal distribution (online supplemental figure 
S4A) just as in our simulations (online supplemental 
figure S1A). On binarization of gene expression levels in 
each melanoma cell (see the Methods section), we quan-
tified the gene state as high (1) or low (0). We noticed 
that a large majority (>92%) of the cells for specific cell 
lines can be categorized into either of the four observed 
phenotypes that is, the phenotypes of the cells were 
found to be consistent within their cell line. The cells 
belonging to the cell lines—MM001, MM011, MM031, 
MM074 and MM087—can be assigned to a proliferative 
subtype with high levels of MITF and SOX10 and low 
levels of SOX9, JUN and ZEB1 ((MITF, SOX10, SOX9, 
JUN, ZEB1)=11000). In contrast, MM047, MM029 and 
MM099 cell lines are typically invasive, with low levels of 
MITF and SOX10 and high levels of SOX9, JUN and ZEB1 
high ((MITF, SOX10, SOX9, JUN, ZEB1)=00111). Inter-
estingly, A375 can be classified as a neural crest like cell 
type with high levels of SOX10 and ZEB1 and low levels 
of MITF, SOX9 and JUN ((MITF, SOX10, SOX9, JUN, 
ZEB1)=01 001). Moreover, the cell line MM057 belonged 
to an intermediate phenotype with a subset of both prolif-
erative and invasive factors being relatively high. This cell 
state can also be found as a subset of the proliferative 
phenotype in our simulation results (figure 1B), further 
underscoring the applicability of a parameter ensemble 
modeling approach to capture the ‘possible cell states’ 
allowed by a GRN. Similar patterns were revealed when 
cell lines were projected in a two-dimensional prolif-
erative and invasive score plane (online supplemental 

figure S4B). After the classification of these cell-lines 
into various phenotypes along the proliferative-invasive 
spectrum based on the five GRN model, we tested our 
classification against the activity-based score of Verfaillie 
proliferative and invasive signatures (figure  1F, ii). The 
phenotype corresponding to a high expression of MITF 
and SOX10 and low expression of SOX9, JUN and ZEB1 
(11000) had the highest Verfaillie proliferative score and 
the least Verfaillie invasive score. Conversely, the 00111 
phenotype where the invasive players are more highly 
expressed compared with the proliferative ones had low 
Verfaillie proliferative scores and high Verfaillie invasive 
scores. The other phenotypes where one or more of both 
proliferative and invasive genes are high were ranked 
as intermediate with respect to the extreme 00111 and 
11000 phenotypes, marking the ends of the Verfaillie 
proliferative-invasive axis. Similarly, the cells we catego-
rized as a neural crest-like phenotype based on MITF, 
SOX10, SOX9, JUN, ZEB1 ((MITF, SOX10, SOX9, JUN, 
ZEB1)=01 001) had enrichment of activity of the neural 
crest associated gene signature (online supplemental 
figure S4C).

Overall, we demonstrate that emergent dynamics of a 
minimal five-gene-based GRN can explain the hallmark 
patterns underpinning phenotypic heterogeneity in 
melanoma cell lines and tumors, both at the bulk and 
single-cell transcriptomic levels, along the proliferative-
invasive spectrum.

Perturbations to the GRN can cause non-genetic phenotypic 
changes along the proliferative-invasive spectrum during 
melanoma disease progression
To understand how perturbing our core GRN can impact 
proliferative-invasive characteristics, we simulated two 
scenarios: (A) downregulation (DE) of SOX10 (figure 2A) 
and (B) OE of SOX9 (figure 2E). DE of SOX10 led to an 
increase in the frequency of the invasive phenotype and a 
decrease in the proliferative phenotype, when compared 
with the unperturbed wild-type network. We also found a 
decreased frequency of the neural-crest phenotype and 
an increased proportion of the intermediate phenotype 
(figure  2A). The model simulations are substantiated 
by in vitro bulk transcriptomic analysis of the effects of 
SOX10 shRNA-mediated knockdown in M010817 human 
melanoma cells (GSE37059).32 SOX10 knockdown led to 
a decrease in levels of the MITF and SOX10-based prolif-
erative score, indicative of an enrichment of the invasive 
state (figure 2B, left). Simultaneously, these cells have a 
higher invasive score, as defined by expression levels of 
SOX9, JUN and ZEB1 (figure 2B, right) as well as with an 
invasive score defined by the expression of SOX9, JUN, 
ZEB1, IRF1 and TCF4 (online supplemental figure S5A). 
Furthermore, cells with SOX10 knockdown displayed 
perturbation of the regulon-based proliferative and inva-
sive scores as compared with control cells (online supple-
mental figure S5A). We next interrogated the impacts 
of SOX10 knockdown in the A375 neural crest-like 
melanoma cell line (GSE180568).44 Similar to M010817 
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melanoma cells (figure 2B), SOX10 knockdown in A375 
cells led to an increase in the invasive score and a slight 
decrease in the proliferative scores (figure  2C, online 
supplemental figure S5B) (GSE180568). We also found 
that the increased invasiveness was accompanied by a loss 
of the neural crest-like signature, indicative of a transition 
from a neural crest-like phenotype to an undifferentiated 
phenotype, as predicted by the in silico perturbation 
simulations (figure 2A). To assess the dynamic trajectory 
of transition from a more proliferative to a more invasive 
phenotype, we next analyzed single cell RNA-seq data of 
SOX10 knock down time-course experiments of three 
available cell lines (MM057, MM074 and MM087), all of 
which exhibit a proliferative phenotype (figure 1F,i). On 
projecting the MM057 control and SOX10-siRNA treated 
cells (GSE134432) on the proliferative/invasive plane, we 
observed a gradual shift of cells from proliferative to inva-
sive. By 72 hours of SOX10 knockdown MM057 cells were 
as invasive as the canonical invasive cell lines (MM047, 
MM099 or MM029), with low levels of MITF and SOX10 
and high levels of SOX9, JUN and ZEB1 high (00111) 
(compare figure 2D with figure 1F,i). Similar trajectories 
and shifts in phenotypic distributions to varying degrees 
were observed for MM074 and MM087 cell lines on knock 
down of SOX10 (online supplemental figure S5C).

Next, we simulated SOX9 OE, which led to an increased 
frequency of the invasive phenotype (figure 2E). Concur-
rently, both the proliferative and neural crest-like 
phenotypes experienced a decrease in their percentage 
distribution, with a mild increase in that of the interme-
diate phenotype. To validate this model prediction, we 
analyzed publicly-available bulk transcriptomic profiles 
of M010817 human melanoma cells in which SOX9 has 
been overexpressed (GSE57463).45 Although we did 
not observe a marked change in the proliferative score 
based on the expression of MITF and SOX10 alone 
(online supplemental figure S5D), we found a decrease 
in the proliferative nature (figure  2D, left), defined by 
the activity score of the MITF and SOX10 regulon and 
an increase in invasiveness (figure 2D, right), as defined 
by the activity score of SOX9, JUN, and ZEB1. The inva-
sive score (JUN, SOX9 and ZEB1 expression) showed a 
significant increase as reflected in the activity scores of 
the regulons of the corresponding genes (online supple-
mental figure S5D), supporting our model prediction. 
A similar trend of increasing in invasive score on SOX9 
OE was also recapitulated using the updated invasive 
score (online supplemental figure S5D). Together, these 
analyses reveal that perturbations in levels of various 
nodes in our minimal GRN is capable of recapitulating 

Figure 2  In silico and experimental perturbations of melanoma cell lines reveal shifts along the proliferative-invasive axis. (A) 
Bar plots showing proportions of steady state solutions in control cases compared with SOX10 downregulation across the four 
phenotypes. Error bars represent standrd deviation (SD) of n=3 technical RACIPE replicates. (B) Bar plots of the experimentally 
observed significant changes (demarcated by *) in the proliferative (defined as the sum of z-normalized expression of MITF and 
SOX10) (left) and invasive scores (defined as the sum of z-normalized expression of JUN, ZEB1 and SOX9) (right) on SOX10 
knockdown (GSE37059). (C) Bar plots showing experimentally observed significant changes in the Invasive score (defined 
as the sum of z-normalized expression of JUN, ZEB1 and SOX9) (left) and neural crest-like ssGSEA score (Tsoi et al) (right) 
(GSE180568). (D) Scatter plot of single cell RNA-Seq data for the transition of SOX10 knockdown cells in MM057 cells at 
24 hours, 48 hours and 72 hours in comparison to control data (GSE134432). (E) Bar plots showing proportions of steady state 
solutions in control cases compared with SXO9 over expression across the four phenotypes. Error bars represent SD of n=3 
technical RACIPE replicates. (F) Bar plots of the experimentally observed changes in the proliferative (defined as the sum of z-
normalized ssGSEA scores of MITF and SOX10 regulons) (left) and invasive scores (defined as the sum of z-normalized ssGSEA 
scores of JUN, ZEB1 and SOX9 regulons) on SOX9 over expression (right) (GSE57463). *Represents a statistically significant 
difference in the levels based on Student’s t-test. RACIPE, random circuit perturbation.
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phenotypic switching along the proliferative-invasive axis 
in melanoma.

Phenotypic plasticity along the proliferative-invasive axis can 
alter PD-L1 levels in melanoma cells
After validating the ability of our GRN to predict pheno-
typic plasticity in melanoma cells, we sought to investigate 
interconnection between phenotypic plasticity along the 
proliferative-invasive spectrum and the immunosuppres-
sive traits of melanoma cells. To understand immune 
evasion in melanoma, we coupled immune-effector mole-
cules: PD-L1 (suppressor on adaptive immune system16) 
and IFNγ signaling (figure 3A). We extended our GRN 
based on following experimental observations: (1) IFNγ 
is a key regulator of PD-L1 levels,21 (2) IFNγ regulates 
differentiation state of melanoma cells,21 46 47 (3) IFNγ can 
transcriptionally activate PD-L1 via NF-κB and/or JAK-
STAT-IRF1 pathway,48 49 and (4) IFNγ can suppress MITF 

expression by inducing CBR and STAT1 association, 
thereby inhibiting CREB binding to MITF promoter.50 
Likewise, PD-L1 is connected to the GRN through the 
following experimentally observed connections: (1) 
MITF can degrade PD-L1 via SA-49,51 (2) JUN activates 
the expression of PD-L1 through STAT3,52 and (3) and 
ZEB1 can upregulate PD-L1 expression53 and promote 
immune escape in melanoma.54 Furthermore, we created 
a variant version of the regulatory network including IRF1 
(online supplemental figure S6A). IRF1 is known to be a 
potent activator of PD-L155 and is also known to be upreg-
ulated by IFNγ signaling.56 SOX10 can also down regulate 
IRF1 in the context of melanoma cells.57 Thus, PD-L1 and 
IFNγ signaling crosstalk extensively with multiple drivers 
of proliferative and invasive phenotypes in melanoma.

As before, we used RACIPE to generate the ensemble 
of steady-state solutions, enabled by this extended GRN. 

Figure 3  Steady state dynamics of emergent cellular phenotypes on addition of the PD-L1-IFNγ signaling motif to the gene 
regulatory network. (A) Gene regulatory network coupling the proliferative-invasive regulators with the PD-L1-IFNγ signaling 
motif in melanoma. The red hammerheads represent inhibitory links, and the black arrows represent activations. (B) Scatter plot 
showing all the steady states projected onto the proliferative-invasive plane defined by expression of MITF, SOX10 (proliferative 
score) and SOX9, ZEB1 and JUN (invasive score). The steady states are colored by cluster labels obtained from hierarchical 
clustering; (C) (i) Scatter plot showing all the steady states projected onto the proliferative-invasive plane colored based on PD-
L1 levels. (ii) Strip plot showing the PD-L1 steady state levels for the four phenotypes. The horizontal lines mark the stratification 
of PD-L1 levels into low, mid and high regions. (D) (i) Scatterplot of single cell RNA-Seq data showing each cell of each cell 
line projected on the invasive-proliferative score and the imputed PD-L1 expression plane. (ii) Boxplots of cells categorized by 
the dominant binary phenotypes based on the five gene signature and their imputed PD-L1 levels. (E) (i) Scatter plot showing 
increase in PD-L1 levels of SOX10 knockdown cells in MM074 cell line as they transition from a proliferative phenotype to an 
invasive phenotype along 24 hours, 48 hours and 72 hours time course single cell RNA-seq data in comparison to control data 
(GSE134432). (ii) Boxplots of cells categorized by different time points quantifying their imputed PD-L1 levels. (F) (i) Scatterplot 
of single cell RNA-seq data projecting cells of two cell lines—A375 (red and orange corresponding to the resistant and sensitive 
clones, respectively) and 451Lu (green and blue corresponding to the resistant and sensitive clones, respectively) on the 
proliferative-invasive plane and (ii) Scatterplot of single cell RNA-seq data projecting Vemurafenib sensitive and resistant A375 
clones with the difference of invasive and proliferative scores on the x-axis and the PD-L1 levels on the y-axis. (G) Barplot 
showing the proliferative scores (left), invasive scores (middle) and PD-L1 levels (right) across control cells, relapsed cells, and 
cells retransplanted into mice after relapse (GSE40213). *Represents a statistically significant difference in the levels based on 
Student’s t-test.
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We plotted all the resultant steady state values on the 
proliferative-invasive plane after performing hierarchical 
clustering (figure  3B). We observed similar phenotypic 
clusters as observed for the earlier GRN (figure  1C), 
demonstrating a strong proliferative-invasive antago-
nism (ρ=−0.817; p<10−5). On overlaying PD-L1 levels on 
the proliferative-invasive plane, we noted that undiffer-
entiated/invasive and neural crest subtypes tended to 
have high PD-L1 expression whereas intermediate and 
proliferative cell types had relatively low levels of PD-L1 
(figure 3C,i). To quantify the association of PD-L1 for these 
phenotypes, we first evaluated the histogram of PD-L1 
distribution, which showed distinct trimodally (online 
supplemental figure S6B). Further analysis revealed that 
neural crest and undifferentiated states express high to 
intermediate levels of PD-L1, in contrast to proliferative 
and intermediate phenotypes, for which PD-L1 expres-
sion is primarily in the low range (figure  3C,ii). The 
variant network including IRF1 (online supplemental 
figure S6A) also showed very similar phenotypic clusters 
(online supplemental figure S6C) as observed for the 
network shown in figure 3A.

To validate these model predictions for association of 
proliferative-invasive status with PD-L1 levels, we investi-
gated the CCLE group of skin cancer cell lines. We used 
two different metrics to quantify the proliferative-invasive 
status: (A) the five genes included in the GRN (=SOX9+-
JUN+ZEB1–SOX10–MITF), and b) the Verfaillie gene 
lists (= ssGSEA(Verfaillie invasive geneset)–ssGSEA 
(Verfaillie proliferative geneset). In CCLE, we observed 
weak positive associations of PD-L1 expression with 
both of these metrics (online supplemental figure S6D). 
Similar observations were seen for TCGA cohort of 
SKCM patients (online supplemental figure S6E). These 
trends remained consistent even with the new metric 
that included updated invasive score including IRF1 and 
TCF4 (online supplemental figure S6F). Further, single 
cell RNA-seq analysis of melanoma cell lines revealed that 
more invasive cell lines were more likely to express higher 
levels of PD-L1 compared with the more proliferative 
cell lines (figure  3D, online supplemental figure S7A). 
Further, among invasive cell lines, we observed PD-L1 
expression levels to be quite heterogeneous with cells 
exhibiting low, medium, and high levels (figure 3D,i). This 
pattern is reminiscence of our model simulations where 
the neural-crest like and invasive phenotypes expressed 
low, intermediate as well as high levels of PD-L1, while the 
proliferative phenotype had predominantly low PD-L1 
levels (figure 3C,ii).

Next, we examined if induction of an invasive state via 
perturbations to the GRN caused concomitant changes 
in PD-L1 expression levels. First, we analyzed single cell 
RNA-seq datasets for siRNA-mediated knockdown of 
SOX10 in MM057, MM074 and MM087 melanoma lines 
(figure  3E). PD-L1 levels significantly correlated to the 
proliferative-invasive status of MM074 cells (figure 3E,i), 
where PD-L1 expression levels were markedly elevated 
72 hours after SOX10 knockdown as compared with the 

non-transfected controls (figure  3E,ii). Similar trends, 
although weaker, were noted in MM057 and MM087 cells 
(online supplemental figure S7B), suggesting a ‘semi-
independent’ behavior between PD-L1 expression and 
the proliferative-invasive status. This pattern denotes that 
while PIT alters PD-L1 expression, these levels can be 
modified by other signaling pathways.

PIT in melanoma cells is also often associated with 
resistance to targeted therapies. More invasive cells are 
more resistant to targeted therapies such as BRAF/MEK 
inhibitors.13 58 Based on this association, we hypothesized 
that targeted therapy may lead to changes in the GRN 
that would impact levels of PD-L1. To provide support for 
this hypothesis, we analyzed single cell RNA-seq data from 
paired parental and vemurafenib-resistant clones of A375 
and 451Lu melanoma cells (GSE108383) 59(figure 3F,i–
ii). On projecting the two cell lines onto a proliferative-
invasive plane based on the five genes in the GRN, we 
observed that the A375 cell line was comparatively more 
invasive in nature compared with the 451Lu cell line. The 
parental 451Lu cell line was predominantly proliferative 
based on the five gene signature ((MITF, SOX10, SOX9, 
JUN, ZEB1)=11000) while the A375 cell line was predom-
inantly neural crest-like ((MITF, SOX10, SOX9, JUN, 
ZEB1)=01 001). The vemurafenib-resistant A375 clone 
was distinctively more invasive compared with its parental 
counterpart, with decreased SOX10 and increased ZEB1 
levels, suggesting that emergence of adaptive resistance to 
vemurafenib may involve a transition from a neural crest 
to invasive phenotype in melanoma (figure  3F,i, online 
supplemental figure S7C). Conversely, vemurafenib-
resistant 451Lu cells did not show such a distinctive 
phenotypic switch, as the parental and the resistant clones 
were both proliferative based on the five gene signature. 
The phenotypic switch from neural crest-like to invasive 
in A375 cells was accompanied by an increase in PD-L1 
levels (figure  3F,ii). No such change was observed in 
451Lu cells that did not undergo a switch in phenotypes 
during the evolution of resistance to vemurafenib (online 
supplemental figure S7D). These trends reinforce our 
model predictions that a switch along the proliferative-
invasive spectrum can contribute to increased PD-L1 
expression.

We next analyzed transcriptomic profiles for control, 
relapsed and retransplanted relapsed tumors for 
the HCmel3 mouse melanoma model (GSE40213)8 
(figure 3G). We found that the control and the retrans-
planted tumor samples were more proliferative and less 
invasive compared with the relapsed melanoma tumors. 
The levels of PD-L1 levels mirrored the invasive nature 
of the tumor samples. More importantly, it shows that 
the increase in PD-L1 levels was reversible as melanoma 
cells underwent IPT (figure 3G). Inflammation-induced 
reversible dedifferentiation has been reported to cause 
melanoma cells to resist T-cell therapy.8 Overall, our 
results show that PD-L1 expression in melanoma cells 
is reversibly associated, at least in part, with the gain of 
a more invasive phenotype, thereby providing further 
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support for the role of phenotypic plasticity along the 
proliferative-invasive axis in mediating upregulation of 
PD-L1.

Role of IFNγ signaling in induction of PD-L1 levels and 
dedifferentiation of melanoma cells
A positive association of PD-L1 and IFNγ has been exten-
sively reported experimentally.60–62 We tested whether 
our model could capture this association. Our simulation 
results suggest that phenotypes with high or intermediate 
IFNγ signaling are likely to have high PD-L1 expression, 
thus highlighting a strong positive influence of IFNγ 
on PD-L1 (ρ=0.75; p<10−5) (figure  4A). To get further 
supporting evidence for this trend, we analyzed bulk 
transcriptomic data of melanoma cell lines treated with 
IFNγ. We found that on treatment, both the Hallmark 
IFNγ response pathway activity and PD-L1 expression 
was enriched, indicating an association between IFNγ 
signaling and PD-L1 levels (GSE154496)63 (figure  4B). 
As expected, the PD-L1 expression levels were correlated 
positively with IFNγ activity levels both in CCLE and TCGA 
samples (figure 4C, online supplemental figure S8A).

Next, we investigated how PIT status associates with IFNγ 
signaling. Our simulations suggest that, similar to PD-L1, 
IFNγ signaling is higher in neural crest-like and undiffer-
entiated phenotypes (online supplemental figure S8B,C). 
Furthermore, while all four phenotypes are observed at 
lower IFNγ levels, neural crest-like and undifferenti-
ated phenotypes predominate at higher levels of IFNγ 
(figure  4D). This trend is reminiscent of experimental 
data suggesting that IFNγ signaling can induce dediffer-
entiation in melanoma.47 In CCLE and TCGA samples, 
we observed strong positive associations between the 
proliferative-invasive status and IFNγ signaling for both 
the reduced five-gene signature or Verfaillie-based metric 
of proliferative-invasive status (figure 4E,F). This positive 
association was also recapitulated when considering the 
updated invasive score and IFNγ signaling (online supple-
mental figure S8D). Additionally, treatment of melanoma 
cells with IFNγ signaling led to significant, but variable 
decreases in proliferative scores and an increase in inva-
sive scores (online supplemental figure S8E). Similar 
results were observed when we analyzed a group of n=8 

Figure 4  Control of PD-L1 levels and the differentiation state of melanoma cells by IFNγ signaling. (A) Scatterplot showing 
the association between PD-L1 levels and IFNγ signaling at steady state levels. (B) Paired plot showing changes in levels of (i) 
Hallmark IFNγ signaling and (ii) PD-L1 levels on treatment of melanoma cells with IFNγ. *Represents a statistically significant 
difference in the levels based on a paired Student’s t-test. (C) Scatter plots showing association between Hallmark IFNγ 
response (x-axis) and PD-L1 expression (y-axis) in the TCGA melanoma cohort. (D) (top) Scatterplot showing the spread of 
steady state solutions with invasive—proliferative score on the x-axis and IFNγ signaling on the y-axis. The steady states have 
been colored by the corresponding four discretized phenotypes. The horizontal line represents the stratification between low 
and high IFNγ signaling regions. (Bottom) Bar plots showing the fraction of steady state solutions that belong to each of the four 
phenotypes segregated based on the level of IFNγ signaling. The error bars represent the SD based on n=3 RACIPE replicates. 
*Represents a statistically-significant difference in the levels based on a Student’s t-test. (E) Scatterplot showing associations 
between the (i) Verfaillie Invasive—Proliferative scores and (ii) five-gene signature based invasive-proliferative scores with 
Hallmark IFNγ signaling. (F) Scatterplot showing associations between the Verfaillie Invasive—Proliferative scores with Hallmark 
IFNγ signaling in the TCGA melanoma cohort. (G) Scatterplot of single cell RNA-Seq data showing individual cells from each cell 
line projected on the invasive-proliferative and Hallmark IFNγ signaling planes. Each color represents a different cell line. CCLE, 
cancer cell line encyclopedia; RACIPE, random circuit perturbation; TCGA, The Cancer Genome Atlas.
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melanoma cell lines treated with either TNF or IFNγ 
(online supplemental figure S8F–H) (GSE152755).47 
While treatment of TNF and IFNγ caused expected signif-
icant increases in the corresponding pathways, PD-L1 
levels were also induced, especially for IFNγ-treated 
cells (Fig S8F). However, the extent of dedifferentiation 
in either case was variable (online supplemental figure 
S8G,H). This is consistence with reports where tran-
scription factors such as JUN have been shown to have 
a relatively modest role in IFNγ induced expression of 
PD-L1 in melanoma cells.49 Analysis of single cell RNA-
seq data of ten patient-derived MM lines (GSE134432), 
revealed a strong positive correlation between intrinsic 
IFNγ signaling levels and invasive/proliferative scores 
(p=0.609; p<10−5) (figure  4G). Together, these results 
show that increased IFNγ signaling in melanoma can 
affect levels of PD-L1 and/or differentiation status of 
melanoma cells via the underlying GRN.

Combinatorial control of PD-L1 levels by IFNγ signaling and 
proliferative-invasive status of cells underlies heterogeneous 
expression patterns of PD-L1 in melanoma
Our model simulations indicated that proliferative and 
intermediate states typically have lower PD-L1 levels, but 
neural crest-like and undifferentiated phenotypes have 
either intermediate or high levels of PD-L1 (figure  5A, 
left). The highest levels of PD-L1 observed were also 
associated with a higher activation of IFNγ signaling 
(figure  5A, right). These observations suggested that 
PD-L1 levels could be upregulated through two possible 
paths: (A) increase in invasive nature and (B) enhanced 
IFNγ signaling. We further quantified the contribution of 
these two paths and their interdependency.

Thus, we segregated the scenarios belonging to high 
versus low IFNγ signaling and subsequently calculated 
the conditional probability of each of the four pheno-
types to display low, medium, and high levels of PD-L1. 

Figure 5  Analysis of coupled dynamics for PD-L1, proliferative-invasive phenotype, and IFNγ signaling. (A) Associations 
between invasive—proliferative score and PD-L1 levels colored by the four phenotypes (left) and IFNγ signaling levels (right). 
(B) Stacked bar plots showing the fraction of steady states belonging to low (gray), mid (orange), or high (red) PD-L1 levels in 
either low IFNγ signaling levels (left) or high IFNγ signaling levels (right). The main proportion of steady states belonging to each 
group are indicated. (C–E) Bar plots showing the relative fold changes in the mRNA expression levels of MITF, JUN, NGFR 
and PD-L1 after 48 hours in non-treated (NT), TNFα/TGFβ treated, IFNγ treated and TNFα/TGFβ /IFNγ treatment conditions in 
melanoma cells (C) SK-MEL-5 (D) MALME-3M (E) A375. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 represents a statistically 
significant difference in the levels based on paired t-test. (F) Scatterplot of single cells from melanoma patients before immune 
checkpoint inhibitors therapy projected on the Invasive-Proliferative score and Hallmark IFNγ signaling (top) and box plots of 
their corresponding PD-L1 levels in a patient specific grouping sorted ascending order according to median expression values 
(bottom). Each color in scatterplot corresponds to a particular patient sample.
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For low IFNγ signaling, proliferative and intermediate 
phenotypes were most likely (>95%) to express low 
PD-L1 levels, but for neural crest-like and invasive pheno-
types, PD-L1 levels were either medium (49%–51%) or 
high (32%–40%) (figure  5B, left). Importantly, while 
proliferative and intermediate phenotypes were more 
homogeneous in terms of PD-L1 levels, the neural crest-
like and invasive ones exhibited higher variance. This 
behavior recapitulates the trends seen in a single-cell 
RNA-seq cohort of melanoma cell lines spread across the 
proliferative-invasive spectrum (figure  3D,i). Together, 
these results suggest that in absence of IFNγ signaling, a 
PIT can increase PD-L1 levels. For high IFNγ signaling, 
amplified heterogeneity in PD-L1 is seen for proliferative 
and intermediate phenotypes. Conversely, invasive and 
neural crest-like are most likely (>98%) to display high 
PD-L1 and thus more homogeneous (figure  5B, right). 
Importantly, we notice that a substantial proportion of 
cells (>25%), irrespective of their proliferative-invasive 
status, can exhibit high PD-L1 levels, under scenarios of 
high IFNγ signaling (compare the proportion of PD-L1 
high cells (red) across phenotypes in figure 5B, right vs 
left). This trend is consistent with experimental reports 
showing PIT inducing factors such as JUN having a rela-
tively minor influence on IFNγ-induced PD-L1 expres-
sion.49 Put together, our simulations highlight that 
increased IFNγ signaling, and a more invasive nature can 
both augment PD-L1 levels.

To experimentally test these model predictions, we 
chose three melanoma cell lines—SK-MEL-5, MALME3M 
(both representative of a proliferative phenotype) and 
A375 (representative of the neural-crest phenotype) 
based on their gene expression profiles in the CCLE 
group of melanoma cell lines. SK-MEL-5 and MALME3M 
have higher proliferative scores compared with their inva-
sive scores and lie toward the proliferative end of the spec-
trum on a two-dimensional proliferative-invasive plane of 
the Verfaillie gene sets (online supplemental figure S9A). 
A375 cells, however, are more toward the center of this 
phenotypic spectrum (online supplemental figure S9A, 
left) and exhibit higher levels of neural crest markers 
compared with MALME3M and SK-MEL-5 (online supple-
mental figure S9A, right). To test our model predictions, 
we treated each of these cell lines with either a combina-
tion of TNFα and TGFβ to induce a PIT or we treated 
the cell lines with IFNγ as an independent modulator 
of PD-L1 levels and assessed the mRNA levels of MITF 
(proliferative marker), JUN (invasive marker), NGFR 
(neural-crest marker) and PD-L1 levels after a duration 
of 48 hours. Treatment of MALME3M and SK-MEL-5 cells 
with both TNFα and TGFβ led to significantly lower levels 
of MITF and higher levels of JUN, indicative of a less 
proliferative and more invasive cell state (figure 5C,D). 
These changes were also accompanied by significant 
increase in NGFR levels, indicating the transition from a 
proliferative to a neural crest/invasive phenotype, as well 
as enhanced PD-L1 levels (figure 5C,D, right). Treatment 

with IFNγ alone, on the other hand, did not cause such 
drastic changes for proliferative (MITF), invasive (JUN) 
and neural crest (NGFR) markers (figure  5C,D). One 
explanation for this modest impact of IFNγ alone on 
these markers can be its epigenetic mode of action, which 
are often discernible over longer time scales.64 Despite 
minimal impact on PIT, IFNγ treatment alone induced 
PD-L1 levels to an even higher extent as compared with 
TNFα/TGFβ treatment (figure 5C,D, right), thus demon-
strating that IFNγ can induce PD-L1 levels efficiently with 
minimal effects on PIT at relatively short timescales. On 
a combinatorial treatment of TNFα/TGFβ and IFNγ, 
PD-L1 levels increased synergistically in both prolifera-
tive cell lines, potentially showing an emergent relation-
ship between the two modes of induction of PD-L1 levels 
(figure 5C,D, right). This observation resonates well with 
our simulation results that under conditions of low IFNγ 
levels, proliferative cells are predominantly (97.35%; 
figure 5B, left) low in terms of PD-L1 levels, but under 
scenarios of high IFNγ levels and a switch (induced by 
TNFα/TGFβ) to more neural crest like or undifferen-
tiated phenotype, most cells (>98.1%; figure  5B, right) 
express high PD-L1.

Next, we checked the effects of individual and combi-
natorial treatments of TNFα/TGFβ and IFNγ on a neural 
crest cell line, A375. We observed a robust decrease of 
proliferative (MITF) and upregulation of invasive (JUN) 
markers on TNFα/TGFβ treatment (figure  5E). IFNγ 
treatment alone inhibited MITF, but had modest effects 
on levels of JUN, consistent with earlier reports.49 Earlier 
observations report that neural-crest phenotype has the 
highest NGFR expression65 and thus we would expect 
that a transition to a more undifferentiated phenotype 
would lead to a decrease in NGFR levels. Validating this 
hypothesis, we observed robust decrease of NGFR mRNA 
expression (figure 5E), indicating that the cells that were 
originally of the neural crest phenotype transitioned to a 
more undifferentiated invasive phenotype. This was again 
accompanied by robust upregulation of PD-L1 levels in 
TNFα/TGFβ and IFNγ treated cases with the combina-
torial treatment (figure  5E, right), showing the highest 
increase as predicted by our model.

Finally, to determine if these trends were observed 
in melanoma cells from treatment naïve patients 
(GSE115978),66 we assessed how PD-L1 levels depended 
on both the extent of PIT and activity of IFNγ signaling. 
Typically, cells from each patient sample cluster together 
in this plot of invasive score and IFNγ signaling activity 
(figure 5F, top), showcasing greater interpatient pheno-
typic variability than intrapatient variability. Across the 
patient samples, we observe scenarios of varying degrees 
of invasive score and IFNγ signaling, enabling us to eval-
uate how these both axes control PD-L1 levels.

First, we focused on pretreatment samples. Compared 
with other cells, Mel129pa cells (pink cluster) were less 
invasive and had lower IFNγ signaling (figure  5F, top). 
These cells had the lowest PD-L1 levels (figure 5F, bottom), 
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thus validating our model predictions that proliferative 
phenotype with low IFNγ signaling has minimal PD-L1 
expression (figure  5B, left). These analyses support a 
model in which at least one of the two axes is needed to 
increase PD-L1 levels: PIT or IFNγ signaling. Conversely, 
patient cells that were enriched for both IFNγ signaling 
and an invasive phenotype (Mel97—blue cluster; Mel89—
purple cluster) had the highest PD-L1 levels (figure 5F). 
This observation also recapitulates our model predictions 
that neural crest-like or invasive states are highly likely to 
have upregulated PD-L1 levels (figure  5B, right). Next, 
we focused on samples which had only one of the two 
axes being active: PIT and IFNγ signaling. Samples with 
high IFNγ signaling but low invasive scores (Mel103—
brown cluster; Mel 71—orange cluster) had higher levels 
of PD-L1 than the ones with high invasive score but with 
low IFNγ signaling (Mel81—green cluster) (figure  5F). 
However, both these scenarios had lower PD-L1 levels 
compared with the ‘double positive’ high invasive and 
high IFNγ activity subset (figure  5F). Therefore, our 
dynamical model can reproduce the origins of PD-L1 
heterogeneity in melanoma as a function of contributions 
from PIT and IFNγ signaling.

Exploring the dual routes of therapeutic resistance in 
melanoma: pre-existing and induced heterogeneity pathways 
and varied trajectories
To better decipher the complex interplay between PD-L1 
expression, PIT, and IFNγ signaling in melanoma under 
the influence of both targeted therapies and immune 
checkpoint inhibitor therapies, we analyzed transcrip-
tomic profiles of WM989 cells treated with vemurafenib 
(a potent, highly selective inhibitor of mutated BRAF 
V600E) after 48 hours of treatment, and 7 days postdevel-
opment of therapy resistance (GSE97681).67 We observed 
that melanoma cells post vemurafenib treatment at both 
these time points were more invasive and had enhanced 
IFNγ signaling activity (figure  6A). This combined 
increase along both IFNγ signaling axis and proliferative-
invasive axis is accompanied by an increase in PD-L1 
expression levels. A short-term response (48 hours of 
treatment with vemurafenib) was found to be sufficient 
to induce a PIT (figure 6A). This trajectory of drug resis-
tance was also seen in other studies in other datasets 
for the same cell line (WM989) treated either treated 
with vemurafenib (GSE161299) (online supplemental 
figure S9B) alone or in combination with pinometostat, 

Figure 6  Role of pre-existing and induced heterogeneity in development of drug resistance to both targeted therapy and 
immunotherapy. (A) Box plot illustrating the changes in proliferative-invasive status (top), IFNγ signaling (middle) and PD-
L1 expression levels (bottom), following treatment with vemurafenib for 48 hours and 7 days. (B) (i) Scatterplot of single-cell 
RNA sequencing (scRNA-seq) data for MEK inhibitor-treated A375 cell line, comparing untreated and vemurafenib-treated 
conditions, projected on the proliferative-invasive plane based on the imputed expression of Verfaillie signatures. (ii) Scatterplot 
depicting IFNγ signaling levels in the A375 cell line under untreated and vemurafenib-treated conditions. The red box denotes 
the transcriptional state which was present in untreated but was absent in Vemurafenib resistant clones. (C) (i) Scatterplots of 
all A375 cell lines under different MEK inhibitor treatment conditions, projected on proliferative-invasive planes, based on the 
imputed expression of Verfaillie signatures. (ii) Scatterplot illustrating the differences in IFNγ signaling levels under various MEK 
inhibitor treatment conditions. (D) Scatterplot showing immune checkpoint inhibitor pretreatment (black) and post-treatment 
(red) single cells projected on the proliferative-invasive plane. Arrows represent hypothesized directions of drift of melanoma 
cells during adaptation to therapy. (E) Contour showing immune checkpoint inhibitor pretreatment (black) and post treatment 
(red) single cells projected on the proliferative-invasive spectrum and Hallmark IFNγ signaling. Arrows represent hypothesized 
directions of drift of melanoma cells due to adaptation to therapy. *Denotes a statistically significant difference in levels based 
on Student’s t-test.
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a clinical-stage DOT1L inhibitor (GSE161298) (online 
supplemental figure S9C).

Next, we investigated the single cell transcriptomics 
profiling of 31,000 BRAF-mutant A375 cells in 4 treat-
ment conditions: untreated/sensitive cells, cells resistant 
to vemurafenib, cells double-resistant to vemurafenib 
and cobimetinib, cells double-resistant to vemurafenib 
and trametinib (GSE164897).68 We observed that the 
untreated cells exhibited two distinct subpopulations—
one of which exhibited a transcriptional state present 
only in the untreated cells (figure  6B, red box), and 
the other overlapped with the state seen in treated cells, 
indicating pre-existing heterogeneity in terms of varying 
invasive nature. In the treated population, cells displayed 
a predominantly more invasive state (figure  6B,i). This 
change could indicate two possible scenarios that are not 
necessarily mutually exclusive: (A) pre-existing hetero-
geneity in proliferative-invasive status of cells may have 
provided more invasive cells with a selective advantage 
during the evolution of drug resistance to vemurafenib, 
(B) drug treatment induced a subpopulation of cells to 
alter phenotypes. Furthermore, these cells had lower 
levels of IFNγ signaling (figure  6B,ii) despite having a 
higher invasive score. This trend agrees with another 
instance (GSE108383) of vemurafenib resistant clones 
of A375 and 451Lu cells characterized by reduced IFNγ 
signaling compared with their sensitive counterparts 
(online supplemental figure S9D). We also observed 
that a slight increase in PD-L1 levels post-treatment in 
vemurafenib-resistant cells, and a positive correlation 
with the invasive status (online supplemental figure S9E). 
These results indicated that in some adaptation strategies, 
the positive association between PIT and IFNγ signaling 
can be compromised, while the levels of PD-L1 and the 
extent of PIT can increase concurrently.

On the other hand, in case of combinatorial drug 
treatment, that is, treatment with BRAF inhibitor vemu-
rafenib in combination with MEK1 inhibitor trame-
tinib or cobimetinib, we observed the emergence of 
another phenotype that was even more invasive than the 
vemurafenib-resistant one (figure  6C,i). This state was 
earlier not observed in untreated samples, and was accom-
panied by an increase in IFNγ signaling (figure  6C,ii), 
suggesting an induction to a distinct new transcrip-
tional state not previously present in the pretreatment 
setting. Such new attractor states enabled by the induc-
tion through combined BRAF/MEK1 inhibition may also 
contribute to the development of resistance and tumor 
relapse. Furthermore, the cell-state transition trajecto-
ry(ies) during the evolution of resistance to a targeted 
therapy combination could depend on cell type itself. For 
example, a combinatorial treatment of MEK and CDK4/6 
inhibitors over a prolonged period (~1 month) promoted 
four different cell populations (GSE230538),69 each with 
distinct cell state trajectories on the proliferative-invasive 
plane. We observed that the cell lines which were drug-
naïve on treatment over 1, 4 and 33 days may or may not 
show a reversal to their original proliferative-invasive 

status during the evolution of resistance. For example, 
MEL-JUSO and M20 became significantly more prolifer-
ative as well as significantly more invasive on becoming 
resistant while the cell lines IPC-298 and SK-MEL-30 
showed an increase in both proliferative and invasive 
scores but returned to a proliferative-invasive state like 
their treatment naïve case at the end of 33 days of drug 
treatments (online supplemental figure S9F).

We next investigated changes in transcriptional state 
along the proliferative-invasive spectrum and IFNγ 
signaling on cells becoming resistant to immune check-
point inhibitors (ICIs). We analyzed single-cell transcrip-
tomics data from patient-derived melanoma cells that are 
resistant to immune checkpoint inhibitor (GSE115978) 
therapy.66 Projecting the pretreatment and post-treatment 
single-cell profiles along the axes of invasive nature, 
PD-L1 expression and IFNγ signaling activity, we observed 
two distinct trajectories that can correspond to adaptive 
response to immune checkpoint inhibitor therapy. In one 
trajectory, melanoma cells become more invasive, as shown 
by a distinct increase in invasive score and a concomitant 
decrease in proliferative scores (figure 6D). These cells 
also have reduced IFNγ signaling activity (figure  6E). 
This trajectory was recently reported in experimental 
data demonstrating that melanoma patients responding 
to anti-PD-1 therapy exhibit a more proliferative gene 
expression signature, while the non-responders were 
enriched in invasive and neural crest-like phenotypes.70 
Another trajectory that cells can follow is cells exhibiting a 
more proliferative nature, without a noticeable change in 
IFNγ signaling activity (figure 6D,E). A similar trajectory 
is reported in response to anti-BRAF therapy, where cells 
can exhibit a hyperdifferentiated phenotype.71 72 Finally, 
we analyzed post-treatment samples, and observed diverse 
trajectories of drug adaptation. We plotted the single-cell 
RNA-seq data from melanoma patients’ post-therapy on 
two-dimensional plane of proliferative-invasive score and 
IFNγ signaling (online supplemental figure S9G, top). 
Similar to treatment naïve samples (figure 5F), interpa-
tient variability dominates over intrapatient variability 
across both the axes (online supplemental figure S9G). 
We observed that the least invasive cells had the highest 
expression of PD-L1 levels (Mel88, Mel78, Mel98 - orange, 
blue and pink clusters, respectively). However, these cell 
clusters were also higher in IFNγ signaling compared 
with the more invasive clusters, such as Mel110 (purple) 
and Mel106 (brown), which had relatively lower levels of 
PD-L1 (online supplemental figure S9G, bottom). These 
results indicate that IFNγ signaling levels may be a domi-
nant determinant of PD-L1 levels as compared with the 
proliferative-invasive status of cells in immune checkpoint 
inhibitor-resistant melanoma cells. Such co-occurrence of 
adaptive drug-tolerant states is reflective of how isogenic 
cells exposed to identical therapeutic stress can diverge 
toward different ‘attractors’ in the phenotypic landscape, 
driving non-genetic heterogeneity. Together, our results 
highlight the importance of both pre-existing heteroge-
neity and cell-state transition driven heterogeneity along 
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the different trajectories on the IP and IFNγ signaling 
axes, as two distinct but not necessarily exclusive routes 
to emergence of drug resistance in cancer cells. However, 
the exact underlying mechanisms of resistance, and the 
interplay between these two routes, require further inves-
tigation and more mechanistic modeling, indicating the 
future scope of our study.

Overall, our dynamical model, coupled with single-
cell transcriptomic analysis of melanoma samples, indi-
cate that both IFNγ signaling activity and PIT can govern 
PD-L1 levels in a combinatorial manner in treatment-naïve 
conditions and specific cases of resistance to targeted 
and/or immune checkpoint inhibitor therapies. More-
over, diverse cellular trajectories of adaptive response to 
anti-BRAF or immune checkpoint inhibitor therapy can 
alter how PIT and IFNγ-induced dedifferentiation shape 
the PD-L1 heterogeneity patterns in a tumor.

DISCUSSION
Melanoma is highly heterogeneous, with diverse under-
lying genomic73 74 and non-genetic features.67 75 Due to 
such extensive heterogeneity, standard targeted inhibitor 
therapies (BRAF inhibitors: dabrafenib, vemurafenib, 
encorafenib; MEK inhibitors: trametinib, cobimetinib, 
binimetinib) are effective only in a subset of patients. 
While combinatorial therapeutic strategies can prolong 
median overall survival and median progression-free 
survival, the acquisition of primary and acquired resis-
tance remains a clinical challenge.76 Similarly, immune 
checkpoint inhibitors have revolutionized treatment for 
advanced melanoma, but these treatments are not univer-
sally effective due to the heterogeneous expression of the 
targeted molecules.

Here, we elucidate how this heterogeneity emerges at 
a non-genetic level. Our minimalistic model of the inter-
actions among key master regulators of PIT demonstrates 
can capture the major phenotypic states common to 
melanoma cells, and their associated immune-suppressive 
status (figure 7A). Coupling this core network to PD-L1 
and IFNγ signaling provides a mechanistic basis for 
observed PD-L1 heterogeneity in patients.22 We demon-
strate that PD-L1 expression can be regulated by combina-
torial influence of IFNγ signaling and proliferative-invasive 
status of a cell, both through dynamical modeling and 
through our extensive analysis of bulk and single-cell 
RNA-sequencing data in vitro, in vivo and from pretreat-
ment and post-treatment patient data. Of significance, we 
show experimentally that the combinatorial induction of 
PIT and increase in IFNγ signaling can lead to potentially 
synergistic increase in PD-L1 levels which is significantly 
higher than individual induction scenarios (figure  7B). 
We also reveal distinct cell-fate trajectories rooted in 
both pre-existing resistant cell states as well as induced 
resistance scenarios that melanoma cells take to adapt 
to currently used targeted therapies and immune check-
point inhibitors (figure 7C).

Our model, in its current form, has several limitations. 
First, we did not find any direct evidence in the literature 
for the existence of an intermediate proliferative/inva-
sive phenotype based on the predicted gene signature. 
This prediction can be explored by further experiments 
to identify a MITFhigh/SOX9high state in preclinical and 
clinical samples. Second, our model could not explain the 
existence of the hyperdifferentiated phenotype, which 
has been reported in the literature.10 Our model is also 
currently not capable of explaining how the negative asso-
ciation of proliferative-invasive status and IFNγ signaling 

Figure 7  Schematic showing (A) phenotypic changes during proliferative to invasive transition and associated increase in 
PD-L1 levels, (B) Individual and combinatorial effects of proliferative to invasive transition inducers and IFNγ on melanoma cell 
population and its effects on dedifferentiation and PD-L1 expression, (C) Distinct paths to adaptation during emergence of 
resistance to targeted and/or immunotherapies.
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manifests in treatment resistant cases and how PD-L1 
levels are regulated in such scenarios. Future iterations 
on network topology are needed to identify the molecular 
interactions enabling this scenarios. Third, our model is 
a simplified minimalistic one addressing cell-autonomous 
behavior, while melanoma cell behavior is affected by 
tumor microenvironment and immune cells too.77 Future 
multiscale models, similar to ones investigating tumor-
immune crosstalk,78 can be helpful in delineating how 
these external signals affect cellular heterogeneity and 
subsequently the therapeutic response.

Despite these limitations, our in silico dynamical 
model, well-calibrated with in vitro, in vivo, and patient 
transcriptomic data both at single-cell and bulk levels, 
can serve as a platform to both better understand the 
emergence of phenotypic heterogeneity in melanoma 
and identify the trajectories of adaptive resistance to 
existing therapies. The experimental validation of syner-
gistic increase in PD-L1 levels as predicted by the model 
opens up new avenues for targeting IFNγ signaling as well 
as PIT inducing pathways to simultaneously inhibit mela-
noma metastasis and immune evasion via T cell exhaus-
tion. We envision that our model can be integrated with 
the patient-calibrated mathematical models79 to suggest 
more effective interventions for metastatic melanoma, 
and to advance the boundaries of precision medicine-
based treatment paradigms.

MATERIALS AND METHODS
GRN simulations using RACIPE
The dynamics of GRNs specific to biological processes 
can be explored extensively by using RACIPE, a compu-
tational framework that takes the topology of a core regu-
latory circuit as an input and generates an ensemble of 
unbiased circuit models with distinct randomized kinetic 
parameters and initial conditions.38 The input topology 
of a regulatory circuit delineates the number of genes 
(nodes) in the network and regulatory links (activating/
inhibitory) connecting them. The input t-node regula-
tory network is then mathematically modeled as a set of 
chemical rate-based non-linear ODEs.

For a node T in the network having Pi activating and 
Nj inhibiting nodes with incoming edges, the ODE 
generated by RACIPE to represent the time evolution of 
concentration of node T is as follows:

	﻿‍

dT
dt = GT ×

∏
i

HS(Pi, P0
iT, nPiT, λPiT

)
λPiT

×
∏
i

HS
(

Nj, N0
jT, nNjT, λNjT

)
−

(
KT × T

)
‍�

where the terms T, Pi, and Nj are concentrations of 
nodes at time t (gene expression levels), n is Hill coef-
ficient showing the influence of Pi or Nj on T, λ is fold 
change in expression of T, caused by regulatory node Pi, 
or Nj, ‍P

0
i ‍ or ‍N

0
j ‍are threshold values of Hill function, GT 

and KT is production rate and degradation rate of node 
T, respectively. HS (shifted hill function) takes in the 

activatory/ inhibitory links in account to determine the 
production rate for the node and is defined by:

	﻿‍
Hs

(
B, B0

A, nBA, λBA

)
= B0nBA

A

B0nBA
A +BnBA

+ λBA
BnBA

B0nBA
A +BnBA ‍�

For a particular input topology file, RACIPE gener-
ates multiple randomized parameters sets and simu-
lates them over multiple initial conditions to identify 
steady-state levels of the nodes. Different initial condi-
tions are randomly chosen from a log-uniform distri-
bution ranging from the minimum possible level to the 
maximum possible level. The parameters are randomized 
by sampling from their respective biologically relevant 
predefined ranges (table 1) given below.

The ‘half-functional’ rule is employed to numerically 
estimate the threshold values in the shifted Hill functions, 
and it ensures that each regulatory link in the network 
has approximately 50% chance to be functional, in the 
ensemble of parameter sets simulated. For example, in 
the case that gene A regulates gene B, all the threshold 
parameters are selected in such a way that, for the RACIPE 
ensemble, the level of A at the steady states has roughly 
50% chance to be above and 50% chance to be below 
its threshold level. If the threshold level is too large or 
too small, the regulatory link is either not functional most 
of the time or constitutively active, thereby changing the 
effective circuit topology, and limiting a comprehensive 
understanding of the circuit function. Thus, the ‘half-
functional rule’ estimates the range of the threshold levels 
by a mean-field approximation and using it to randomly 
sample the threshold parameters. For a regulatory link 
from gene A (regulator) to gene B (target), the threshold 
level AB

0 can be estimated as follows. First, the range of 
expression of gene A is estimated without considering any 
of its regulators. The A level without regulation satisfies,

	﻿‍ Ȧ = G − kA‍�

By randomizing both G and k by prespecified limits 
(table 1), an ensemble of random models is generated, 
from which the distribution of the steady state levels of 
gene A is obtained. To meet the half-functional rule, the 
median of the threshold level should be chosen to be the 

Table 1  Ranges of randomized parameters in RACIPE

Parameter
Minimum 
value

Maximum 
value

Production rate (G) 1 100

Degradation rate (k) 0.1 1

Inhibition fold change (λ−) 0.01 1

Activating fold change (λ+) 1 100

Hill’s coefficient (n) 1 6

Threshold Half-functional rule: ensures 
that each regulatory link in the 
network has approximately 
50% chance to be functional

RACIPE, random circuit perturbation.
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median of this distribution. When gene A is regulated 
by other genes (ie, its upstream regulators), its median 
threshold level is estimated by taking A’s regulators into 
account, and with assumption that the levels of all these 
regulators (eg, gene B, C) follow the same distribution as 
an isolated gene.

The possible steady state solutions are obtained by 
solving the coupled ODEs using Euler method. RACIPE 
provides steady state gene expression data and their char-
acteristic kinetic parameters as an output. The obtained 
steady state solutions are then Z-normalized.

	﻿‍ Zi = Xi−Xm
Xstd ‍�

where Xm and Xstd are the mean and SD for a given 
node, calculated by considering the gene expression 
values of that node across all its steady states.

Simulations for all the networks were performed in 
triplicates, with 10,000 parameter sets per replicate and 
100 initial conditions for each parameter set. The robust 
dynamical features of the input network can then be 
statistically analyzed from the output data using several 
tools such as hierarchical clustering and principal compo-
nent analysis.

Networks for the PIT and its coupling with PD-L1 and 
IFNγ signaling were mathematically modeled using the 
above procedure. The perturbation analysis of modu-
lating the gene expression level of a given node, were 
also carried out using RACIPE by either OE or downex-
pressing (DE) the said node by 10-fold. All codes for the 
RACIPE analysis are uploaded to GitHub and are acces-
sible with the link https://github.com/seemadri/PD-L1_​
Heterogeneity_Melanoma

Transcriptomic data analysis: bulk RNA seq and microarray 
datasets
Publicly available processed microarray and bulk RNA-
seq datasets were obtained for melanoma specific datasets 
(online supplemental table S1) from GEO as well as from 
CCLE (skin cell lines) and TCGA-SKCM (patient data). 
To estimate the activity scores for a pathway/gene list, we 
used ssGSEA functionality of the python module gseapy.80

Gene Lists and pathways for activity estimation
To classify the ensemble of steady states into cellular 
phenotypes more systematically, we defined two scores: 
proliferative score and invasive score. The proliferative 
score is calculated by taking the summation of z-normal-
ized expression values of MITF and SOX10, the known 
master regulators of proliferative phenotype in mela-
noma. The invasive score is calculated by summing the 
z-normalized expression values of genes that are known 
to be associated with cell invasion and metastasis: SOX9, 
JUN and ZEB1.

Proliferative score=Σ (z-normalized expression of 
MITF+z-normalized expression of SOX10).

Invasive score=Σ (z-normalized expression of SOX9+z-
normalized expression of JUN+z-normalized expression 
of ZEB1).

Invasive-Proliferative score=Invasive score–Proliferative 
score (as defined above).

In the case of including TCF4 and IRF1 in the invasive 
group of genes, the invasive score and the Invasive–Prolif-
erative score are modified as follows:

Invasive score=Σ (z-normalized expression of SOX9+z-
normalized expression of JUN+z-normalized expression 
of ZEB1+z-normalized expression of TCF4+z-normalized 
expression of IRF1).

Invasive-Proliferative score=Invasive score–Proliferative 
score (as defined above).

The signatures for invasive and proliferative nature 
of melanoma were obtained from Verfaillie et al.43 The 
neural-crest like signature for estimating the neural crest 
like nature of samples/cells were obtained from Tsoi et 
al41 and Rambow et al.10 The regulon lists for the tran-
scription factors MITF, JUN, SOX10, SOX9 and ZEB1 
were obtained from the study by Garcia-Alonso et al.81 The 
hallmark pathways for IFNγ signaling and TNFα signaling 
were obtained from the list of hallmark pathways from 
MSigDB.82

Transcriptomics data analysis: single cell RNA-seq datasets
Publicly available count matrices for single cell melanoma 
datasets for cell lines as well as patient derived lines/
samples were downloaded from GEO. Imputation of the 
gene expression matrices were performed using MAGIC 
algorithm.83 Activity scores for pathways/gene lists were 
computed on the imputed gene expression values using 
AUCell.84

In vitro experiments
Melanoma cells (A375, MALME 3M, SKMEL-5) were 
seeded at a concentration of 4×104 per well in a six well 
plate format. Cells were then pretreated with either TNFa 
(100 ng/mL)/TGFb (20 ng/mL) or IFN-gamma (10 ng/
mL) for 48 hours. mRNA was extracted according to 
manufacturer’s protocol (Zymo Research) and 500 ng of 
mRNA was reverse transcribed into cDNA (High-Capacity 
cDNA Reverse Transcription Kits). Finally, mRNA levels 
of c-Jun, Zeb1, Ngfr2, MITF and PDL1 were measured 
and normalized with respect to GAPDH.

Statistical analysis
Spearman correlation coefficients and corresponding 
significance levels (p values) were computed to estimate 
the degree of association between gene expression/scores 
and/or activity scores of pathways. Paired/unpaired 
students t-tests as well as the corresponding significance 
values were performed to assess the changes in mean 
levels of gene expressions and/or pathway activities.
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SUPPLEMENTARY FIGURES  

 

Figure S1: Characteristic gene expression profiles of master regulators for different phenotypes and 

benchmarking against Verfaillie scores. A) Violin plots of z-normalized steady state gene expression values of 

MITF, SOX10, ZEB1, JUN and SOX9 grouped by cluster labels obtained from hierarchical clustering. Kernel 

density estimates for steady state expression of master regulators showing bimodality, partitioned by red line. B) 

Scatter plot showing the spread of steady state solutions with Proliferative score on x-axis and Invasive score on 

y-axis. The steady states have been colored by Neural crest like scores. C) Scatter plot comparing five gene based 

proliferative and invasive score against ssGSEA score for Verfaillie proliferative (left) and invasive gene signatures 

(right) in CCLE group of skin cancer cell lines. D) Scatter plot comparing five gene based proliferative and invasive 

score against ssGSEA score for Verfaillie proliferative (left) and invasive gene signatures (right) in TCGA cohort of 

SKCM patients. E) Scatter plot showing association between Verfaillie proliferative and invasive ssGSEA scores 

for CCLE group of skin cancer cell lines (left) and TCGA cohort of SKCM patients (right).  

 

 

Figure S2: Assessing random gene combination correlations with Verfaillie signatures. A) Frequency 

distribution of correlation coefficients for random combinations of any 2 (left) or 3 (right) transcription factors with 

Verfaillie proliferative (left) and invasive (right) gene signature ssGSEA scores in the CCLE skin cancer cell line 

group. B) Same as A) but for TCGA SKCM patient cohort. C) Frequency distribution of correlation coefficients for 

random combinations of 2 (left) or 3 (right) transcription factors chosen from within the Verfaillie proliferative (left) 

and invasive (right) signatures in the CCLE skin cancer cell line group. D) Same as C) but for TCGA SKCM patient 

cohort. Red line indicates the correlation of proliferative score (MITF+SOX10) with the Verfaillie proliferative 
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signature (left) and the correlation of invasive score (SOX9+ZEB1+JUN) with the Verfaillie invasive score in A, B, 

C, and D. E) Frequency distribution of correlation coefficients for random combinations of 5 transcription factors 

chosen from within the Verifaillie invasive signature in CCLE skin cancer cell line group (top) and TCGA SKCM 

patient cohort (bottom). The red line represents the correlation of the refined invasive score 

(SOX9+ZEB1+JUN+IRF1+TCF4) with the Verfaillie invasive score. 

 

 

Figure S3: Meta-analysis of melanoma datasets. A) Volcano plots showing correlation of two-gene based 

proliferative score with Verfaillie proliferative gene signature based ssGSEA score B) Volcano plots showing 

correlation of three-gene based invasive score with Verfaillie invasive gene signature based ssGSEA 

score C) Volcano plots showing correlation of Verfaillie proliferative ssGSEA score with Verfaillie invasive ssGSEA 

score, for all bulk transcriptomics datasets. nnegative and npositive denote the number of datasets (out of 32) that are 

correlated negatively (Spearman correlation coefficient < -0.3; p-value < 0.05) and positively (Spearman correlation 

coefficient > 0.3; p-value < 0.05). D) Scatterplot showing association between the proliferative (MITF+SOX10) and 

invasive (SOX9+ZEB1+JUN+IRF1+TCF4) scores for clinical samples from i) TCGA cohort of SKCM patients ii) 

CCLE-skin cell lines. E) Scatter plot comparing five gene based invasive score against ssGSEA based Verfaillie 

invasive score in i) TCGA cohort of SKCM patients ii) CCLE-skin cell lines. F) Volcano plot for the results of meta-

analysis of melanoma datasets, accounting for the associations between the i) proliferative (MITF+SOX10) and 

invasive scores (SOX9+ZEB1+JUN+IRF1+TCF4) ii) invasive scores (SOX9+ZEB1+JUN+IRF1+TCF4) with 

Verfaillie invasive gene signature based ssGSEA score; nnegative and npositive denote the number of datasets 

(out of 32) that are correlated negatively (Spearman correlation coefficient < -0.3; p-value < 0.05) and positively 

(Spearman correlation coefficient > 0.3; p-value < 0.05)  
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Figure S4: Single-cell transcriptomics data analyses. A) Density distributions for expression of master 

regulators- MITF, SOX10, SOX9, ZEB1, JUN as see in the single cell RNA-seq dataset GSE134432.The red line 

partitions the expression profiles of these genes to high and low levels at the major minima of each 

distribution. B) Scatterplot of single cell RNAseq data showing each cell of each cell line projected on a proliferative-

invasive plane define by proliferative (MITF+SOX10) and invasive (SOX9+ZEB1+JUN+IRF1+TCF4) imputed 

scores. C)Boxplots of cells categorized by the dominant binary phenotypes based on the five gene signature and 

ssGSEA scores based on Neural-crest markers (GSE134432).  
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Figure S5: Transcriptomics data in support of transitions along the proliferative-invasive axis upon 

experimental perturbations. A) Bar plots of the experimentally observed significant changes (demarcated by *) 

in the five gene based invasive scores with TCF4 and IRF1 (left), in the proliferative (defined as the sum of z-

normalized ssGSEA scores of MITF and SOX10 regulons) (middle) and invasive scores (defined as the sum of z-

normalized ssGSEA scores of JUN, ZEB1 and SOX9 regulons) (right) upon SOX10 down expression in comparison 

to control case (GSE37059). B) Bar plots showing changes in proliferative (left) and invasive (right) scores upon 

SOX10 down expression (GSE180568). C) Scatter plots showing the spread of cells of MM074 (left) and MM087 

(right) cell line as they transition along the proliferative-invasive 2D plane over a period of 72 hours of SOX10 

siRNA treatment. D) Bar plots showing experimentally observed changes in the proliferative score (left) and three-

gene based invasive score (middle) and refined five-gene based (right) upon SOX9 over expression (GSE57463).  

 

Figure S6: Refining the regulatory network with IRF1 and relation of PD-L1 expression with refined invasive 

score. A) Enhanced gene regulatory network incorporating IRF1 into the previous circuit. B) Density histogram of 

PD-L1 expression fitted with kernel density estimate showing a trimodal distribution. Red lines show the partition 

between PD-L1 expression levels being high, mid, and low. C) Hierarchically clustered heatmap of simulated 

steady states permitted by the new gene regulatory network and qualitative classification of the four emerging cell 

states. The simulated four phenotypes have been labelled. D) Scatterplot showing associations between the i) 

Verfaillie Invasive – Proliferative scores and ii) 5 gene signature based invasive – proliferative scores with PD-L1 

levels. E) Scatterplot showing associations between the Verfaillie Invasive – Proliferative scores with PD-L1 levels 

in the TCGA cohort of melanoma patients. F) Scatterplot showing the association of invasive score with TCF4 and 

IRF1 and PD-L1 expression for i) CCLE group of skin cancer cell lines ii) TCGA cohort of SKCM patients.  
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Figure S7: Associations between PD-L1 levels and proliferative-invasive nature of melanoma cells. 

A) Scatterplot showing the association of PD-L1 expression with the new (added IRF1 and TCF4) invasive-

proliferative score axis in GSE134432. B) Scatter plot and corresponding boxplots showing changes in PD-L1 

levels of SOX10 knockdown cells in MM057 (top) and MM087 (bottom) cell lines as they transition from a 

proliferative phenotype to an invasive phenotype along 24h, 48h and 72h time course single cell RNA-seq data in 

comparison to control data (GSE134432). C) Scatterplot of single cell RNA-seq data projecting cells of two cell 

lines – A375 (red and orange corresponding to the resistant and sensitive clones, respectively) and 451Lu (green 

and blue corresponding to the resistant and sensitive clones, respectively) on the refined proliferative-invasive 

plane. D) Box plot showing differences in PD-L1 levels in the sensitive and resistant clones of 451Lu melanoma 

cells. * represents a statistically significant difference in the levels based on Student’s t-test.  

 

Figure S8: Characterizing association of IFNγ signaling with PD-L1 levels and proliferative invasive nature 

of melanoma cells. A) Scatter plots showing association between Hallmark IFNγ response on x-axis and PD-L1 

expression on y-axis for CCLE group of skin cell lines. B) Scatter plot showing all the steady states projected onto 

the proliferative - invasive plane colored based on IFNγ signaling levels. C) Strip plot showing the PD-L1 steady 

state levels for the 4 phenotypes. The horizontal lines mark the stratification of IFNγ signaling levels into low and 

high regions. D) Scatterplot showing the association between IFNγ signaling and invasive score including TCF4 

and IRF1 in TCGA cohort of SKCM patients. E) Paired plot showing the changes in levels of i) Verfaillie proliferative 

and ii) Verfaillie Invasive activity levels when wild type melanoma cells are treated with IFNγ. F) Boxplot showing 

levels of Hallmark TNFα, Hallmark IFNγ signalling and PD-L1 levels in 8 melanoma cells treated with either TNF 

or IFNγ. Paired plot showing the changes in levels of Verfaillie proliferative and Verfaillie Invasive activity levels 

when wild type melanoma cells are treated with G) TNF or H) IFNγ. * represents a statistically significant difference 

in the levels based on a paired Student’s t-test while ns represents a non-significant difference.  
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Figure S9: Impact of targeted therapy and immunotherapy on interplay among PD-L1 levels, proliferative 

to invasive transition and IFNγ signaling. A) Scatterplots showing the association between Verfaillie proliferative 

and invasive score (left) and proliferative to invasive transition score with Neural crest ssGSEA score (right) in 

CCLE skin cancer cell line. Cell lines selected for experimentation (SK-MEL-5, MALME-3M, A375) on basis of their 

proliferative-invasive status are highlighted in red circles. B) Box plots showing changes along the proliferative-

invasive axis (top) and IFNγ signaling (bottom) upon vemurafenib treatment (GSE161299). C) Box plots showing 
changes along the proliferative-invasive axis (top) and IFNγ signaling (bottom) upon vemurafenib treatment alone 
and in combination with pinometostat (GSE161298). D) Box plots showing changes in Hallmark IFNγ signaling in 
sensitive and resistant clones of A375 (top) and 451Lu (bottom) melanoma cells. E) Scatterplot showing modest 

PD-L1 levels upon vemurafenib treatment (GSE164897). F) Contour maps showing transitions on the proliferative-

invasive plane after treatment with MEK inhibitors and CDK4/6 inhibitors for 4 different cell lines (GSE230538). G) 

Scatterplot of single cells from melanoma patients after treatment with immune checkpoint inhibitor therapy 

projected on the Invasive-Proliferative score and Hallmark IFNγ signaling and their corresponding PD-L1 levels in 

a patient specific grouping sorted ascending order according to median expression values. Each color in the 

scatterplot corresponds to a particular patient sample. 
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