Development and validation of the immune signature to predict distant metastasis in patients with nasopharyngeal carcinoma ========================================================================================================================== * Sai-Lan Liu * Li-Juan Bian * Ze-Xian Liu * Qiu-Yan Chen * Xue-Song Sun * Rui Sun * Dong-Hua Luo * Xiao-Yun Li * Bei-Bei Xiao * Jin-Jie Yan * Zi-Jian Lu * Shu-Mei Yan * Li Yuan * Lin-Quan Tang * Jian-Ming Li * Hai-Qiang Mai ## Abstract **Background** The tumor immune microenvironment has clinicopathological significance in predicting prognosis and therapeutic efficacy. We aimed to develop an immune signature to predict distant metastasis in patients with nasopharyngeal carcinoma (NPC). **Methods** Using multiplexed quantitative fluorescence, we detected 17 immune biomarkers in a primary screening cohort of 54 NPC tissues presenting with/without distant metastasis following radical therapy. The LASSO (least absolute shrinkage and selection operator) logistic regression model used statistically significant survival markers in the training cohort (n=194) to build an immune signature. The prognostic and predictive accuracy of it was validated in an external independent group of 304 patients. **Results** Eight statistically significant markers were identified in the screening cohort. The immune signature consisting of four immune markers (PD-L1+ CD163+, CXCR5, CD117) in intratumor was adopted to classify patients into high and low risk in the training cohort and it showed a high level of reproducibility between different batches of samples (r=0.988 for intratumor; p<0.0001). High-risk patients had shorter distant metastasis-free survival (HR 5.608, 95% CI 2.619 to 12.006; p<0.0001) and progression-free survival (HR 2.798, 95% CI 1.498 to 5.266; p=0·001). The C-indexes which reflected the predictive capacity in training and validation cohort were 0.703 and 0.636, respectively. Low-risk patients benefited from induction chemotherapy plus concurrent chemoradiotherapy (IC+CCRT) (HR 0.355, 95% CI 0.147 to 0.857; p=0·021), while high-risk patients did not (HR 1.329, 95% CI 0.543 to 3.253; p=0·533). To predict the individual risk of distant metastasis, nomograms with the integration of both immune signature and clinicopathological risk factors were developed. **Conclusions** The immune signature provided a reliable estimate of distant metastasis risk in patients with NPC and might be applied to identify the cohort which benefit from IC+CCRT. * tumors * oncology * immunology * pathology ## Introduction In South China, nasopharyngeal carcinoma (NPC) is one of the most prevalent cancers.1 2 Of the 87 000 newly diagnosed cases of NPC each year, more than 70% are locoregionally advanced disease.3 The prevention of distant metastasis, which is the main reason for treatment failure in advanced NPC remains unsatisfactory.4 The currently applied method for guiding treatment and predicting prognosis is mainly based on the tumor–node–metastases (TNM) staging system, which only take anatomical data into consideration and is insufficient to predict distant metastasis. Therefore, more precise diagnostic measures and effective treatments are required to guide individual treatment for patients with NPC. Emerging evidence demonstrates that the specific tumor microenvironment could promote tumor progression and the diversity of its characteristics could be used for molecular classification, prediction of treatment responses and prognosis in a variety of cancers.5–7 NPC is characterized by abundant immunocell infiltration in the primary tumor, including T cells, B cells, mast cells (MCs), macrophages, and neutrophils.8 Previous studies suggested the adverse effects of the increase in macrophage, MCs, and neutrophils infiltration, which could play important roles in tumor support.9–11 In the meantime, many studies have reported that non-malignant lymphocytes infiltrating into the tumor and stroma was associated with favorable prognostic effects.12 13 However, the antitumor response of these lymphocytes was often suppressed by immune checkpoints. Among them, programmed cell death-1 (PD-1) and T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) were well-known immune checkpoints that hindered the function of activated T cells by mainly connecting programmed death-ligand 1 (PD-L1) and galectin-9, respectively.14 15 In addition, lymphocyte-activation gene 3 (LAG-3) and galectin-1 were novel tumor immunotherapeutic targets, which recently attracted enormous attention.16 17 These immune cells and immune checkpoints might serve as important identifiers permitting early diagnosis and subgroup classification.18 19 The previous studies on immune microenvironment of NPC were mostly presented with small sample size and an absence of independent validation, and mainly focused on limited number of markers. Besides, the coexpression of markers and the characteristics of non-malignant cells were often neglected. Since both malignant cells and stromal cells orchestrate in tumor-associated inflammation, tumor progression, and metastasis,20 it is of great necessity to picture the whole landscape of tumor immune microenvironment and pay attention to their relative locations. Furthermore, the difference in immune patterns among patients with various clinical outcomes, particularly distant metastasis should also be concerned and emphasized. Cell-specific and topological analysis of immune checkpoint expression and immune cells in patients has become feasible with the development of fluorescent multiplex immunohistochemistry (IHC) and automated quantitation technology, which offers more objective perspectives and provides better prognostic information compared with conventional IHC-based pathological estimation.21 22 In the present study, a MultiOmyx platform was used to perform coexpression analysis and phenotype identification by integrating results from individual markers. In that case, we could simultaneously quantify the expression of 17 immune markers in intratumor and stromal tissues, including 6 important immune checkpoint molecules (PD-1, PD-L1, TIM-3, galectin-9, LAG-3, and galectin-1), and 11 relevant prognostic leukocyte markers: mature T lymphocytes (CD3), helper T cells (CD4), cytotoxic T cells (CD8), neutrophils (CD66b), T-cell follicular helper cells (CXCR5), regulatory T cells (Tregs) Foxp3+, monocytes (CD68), M2 macrophages (CD163), type 1 helper T cells (T-bet), and MCs (CD117), in a large cohort of NPC cases. The prediction of distant metastasis in patients with NPC can be further achieved by identifying and validating the immune signature. Moreover, we produced more accurate nomogram models for distant metastasis by integrating the immune signature with other clinical risk factors. ## Patients and methods ### Study population The study workflow is shown in figure 1. The present study used the following eligibility criteria1: newly diagnosed stage II–IVa NPC2; did not receive any antitumor therapy before biopsy sampling3; received radical intensity modulated radiotherapy (IMRT) with or without chemotherapy4; age ≥18 years; Eastern Cooperative Oncology Group (ECOG) score between 0 and 25; adequate hematological, renal, and hepatic functions; and6 no concomitant pregnancy, lactation, and other malignant disease. Between October 20, 2010 and March 16, 2016, 194 samples were obtained from patients treated at the Sun Yat-sen University Cancer Center (Guangzhou, China). As the external validation cohort, 304 samples were obtained from the Sun Yat-sen Memorial Hospital (Guangzhou, China) between December 12, 2011 and September 1, 2015. The eighth edition of the American Joint Committee on Cancer Staging Manual was used to restage all the patients. Theonline supplementary file 6(p1) showed detailed information concerning the radiotherapy dose and chemotherapy regimens. The plasma Epstein–Barr virus (EBV) DNA concentrations of patients were measured by quantitative PCR as described in the online supplementary file 6 (p 1, 2). ### Supplementary data [[jitc-2019-000205supp006.pdf]](pending:yes)  [Figure 1](http://jitc.bmj.com/content/8/1/e000205/F1) Figure 1 Workflow of the present study. (A) Process of multiplexed immunofluorescence staining and image analysis. (B) Study flow. (C) Example of a 2×2 correlation of the immune signature in the intratumor between two continuous sections of TMAs (r=0.988). (D) Scatter diagram illustrating the immune signature A of the training and validation cohorts. Statistical comparison was performed by first testing normality using the Kolmogorov-Smirnov test, and then the Mann-Whitney non-parametric test was used to compare the two groups. LASSO, least absolute shrinkage and selection operator; NPC, nasopharyngeal carcinoma; TMA, tissue microarray; TSA, tyramide signal amplification. ### Multiplexed immunofluorescence staining One 1.0 mm tissue core from intratumor area was used to construct the tissue microarrays (TMAs), and another selected tissue core was available to locate stromal regions if possible in training cohort and one 1.0 mm tissue core from intratumor area was used to construct the TMAs in validation cohort. All tissue cores were reassessed by two pathologists (L-JB and S-MY), and tissue cores containing more than 70% tumor cells or stromal cells were included for further analysis, so the total area of intratumor and stromal tissue analyzed in each case was more than 0.55 mm2. All immunofluorescence staining was carried out on 4-μm-thick formalin-fixed, paraffin-embedded TMAs. In the present study, we selected 17 prognostic markers mentioned earlier in this article for immunofluorescence staining of NPC tissues according to their involvement in cancer prognosis.9 13 23–30 The biomarkers’ names, antibody dilutions, and antibody clones are presented in online supplementary table 1. online supplementary file 6 (p 2,3) detailed the method about validation and standardization of antibodies. PANO 7-plex IHC kit, cat 0004100100 (Panovue, Beijing, China) was used according to the manufacturer’s protocol. Briefly, TMAs embedded in paraffin were deparaffinized, rehydrated, and subjected to antigen retrieval buffer treatment. Antigen retrieval was performed by microwave treatment in basic (EDTA, pH 9.0) antigen retrieval buffer. To block the endogenous peroxide activity, the sections were incubated in 3% hydrogen peroxide for 10 min at room temperature, followed by washing in 1×Tris-buffered saline–Tween 20. The sections were then incubated with each primary antibody separately for 60 min. After washing, the sections were incubated for 10 min with a rabbit or mouse probe antibody specific for the species of the primary antibody, washed, and then incubated with a rabbit or mouse horseradish peroxidase conjugated secondary antibody for a further 10 min. The sections were then washed and incubated with opal fluorophores (1:100 dilution in tyramide signal amplification reagent from the opal kit). For each additional marker, the protocol was repeated by treating the slides with an antigen retrieval step, followed by primary antibody staining and the subsequent downstream steps. Finally, all sections were stained using 2-(4-amidinophenyl)-1H-indole-6-carboxamidine (D9542, Sigma-Aldrich) for 3 min. The sections were imaged under a fluorescent microscope fitted with an automated quantitative pathology imaging system called Polaris System (PerkinElmer, Waltham, Massachusetts, USA). Images were unmixed and annotated using inForm image analysis software (V.2.4, PerkinElmer). A combination of the percentage and intensity of positively stained cells was used to score the immune markers to generate a histochemistry (H)-score.31 online supplementary file 6 (p 3–5) detailed the process of identification of intratumor and stromal tissue and the multispectral imaging and scoring standard for the immune markers. ### Supplementary data [[jitc-2019-000205supp001.pdf]](pending:yes) ### Statistical analysis The H-score or percentage of immune cells obtained from all available cores in the intratumor and stromal tissues of each case were used. We first compared 54 patients with patients with NPC at the Sun Yat-sen University Cancer Center with metastasis (n=25) or without metastasis (n=29) after radical therapy as the original training group. This group was well balanced in terms of T stage, gender, age, N stage, and treatment method, which eliminated the effect of these factors on metastasis (online supplementary table 2). Univariate analyses using Cox proportional hazards regression modeling was then used to test the significance of different immune markers in this original training group. The p-value for significant markers (<0.05) remained for further validation within the training group. To construct a prediction model in the training group, we used a penalized logistic model to select markers. The coefficients weighted by the penalized logistic model were used to construct the prediction model using the R package glmnet in the training cohort (online supplementary file 6 (p 5)). In the training cohort, the X-tile software (V.3.6.1; Yale University, New Haven, Connecticut, USA), which can automatically select the optimum data threshold according to the highest χ² value (minimum p value) defined by Kaplan-Meier survival analysis and log-rank test32 was used to identify the optimal cut-off value. Distant metastasis-free survival (DMFS) was the primary endpoint, defined as the interval between the first day of diagnosis to the advent of first distant metastasis event. Progression-free survival (PFS) was the secondary endpoint, defined as the interval between the first date of diagnosis and disease progression or death from any cause. The Kaplan-Meier method was used to analyze survival, and the log-rank test was used to compare the differences between groups. We calculated the HRs using univariate Cox regression analysis. As a predictor of benefit gained from induction chemotherapy plus concurrent chemoradiotherapy (IC+CCRT), the immune signature was analyzed in the combined training and external cohorts. Multivariate Cox regression analysis with backward selection was performed to test the independent significance of different variables. To remove non-significant variables from the analysis, the threshold p value was set at 0.1 (p>0.1), and the final Cox model retained marginally significant variables (005
EGFR mutation and surrounding PD-L1-positive tumor-associated macrophages. Intern Med 2019;58:3033–7.[doi:10.2169/internalmedicine.2875-19](http://dx.doi.org/10.2169/internalmedicine.2875-19) 48. Ribatti D . Mast cells as therapeutic target in cancer. Eur J Pharmacol 2016;778:152–7.[doi:10.1016/j.ejphar.2015.02.056](http://dx.doi.org/10.1016/j.ejphar.2015.02.056) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25917325 [CrossRef](http://jitc.bmj.com/lookup/external-ref?access_num=10.1016/j.ejphar.2015.02.056&link_type=DOI) [PubMed](http://jitc.bmj.com/lookup/external-ref?access_num=25917325&link_type=MED&atom=%2Fjitc%2F8%2F1%2Fe000205.atom) 49. Fu H , Zhu Y , Wang Y , et al . Identification and validation of stromal immunotype predict survival and benefit from adjuvant chemotherapy in patients with muscle-invasive bladder cancer. Clin Cancer Res 2018;24:3069–78.[doi:10.1158/1078-0432.CCR-17-2687](http://dx.doi.org/10.1158/1078-0432.CCR-17-2687) [Abstract/FREE Full Text](http://jitc.bmj.com/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MTA6ImNsaW5jYW5yZXMiO3M6NToicmVzaWQiO3M6MTA6IjI0LzEzLzMwNjkiO3M6NDoiYXRvbSI7czoyMjoiL2ppdGMvOC8xL2UwMDAyMDUuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 50. Zheng Z , Cai Y , Chen H , et al . CXCL13/CXCR5 axis predicts poor prognosis and promotes progression through PI3K/Akt/mTOR pathway in clear cell renal cell carcinoma. Front Oncol 2018;8:682.[doi:10.3389/fonc.2018.00682](http://dx.doi.org/10.3389/fonc.2018.00682) pmid:http://www.ncbi.nlm.nih.gov/pubmed/30723697 [PubMed](http://jitc.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjitc%2F8%2F1%2Fe000205.atom) 51. Zhu Z , Zhang X , Guo H , et al . CXCL13-CXCR5 axis promotes the growth and invasion of colon cancer cells via PI3K/Akt pathway. Mol Cell Biochem 2015;400:287–95.[doi:10.1007/s11010-014-2285-y](http://dx.doi.org/10.1007/s11010-014-2285-y) pmid:http://www.ncbi.nlm.nih.gov/pubmed/25476740 [PubMed](http://jitc.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjitc%2F8%2F1%2Fe000205.atom) 52. Larbcharoensub N , Mahaprom K , Jiarpinitnun C , et al . Characterization of PD-L1 and PD-1 expression and CD8+ tumor-infiltrating lymphocyte in Epstein-Barr virus-associated nasopharyngeal carcinoma. Am J Clin Oncol 2018;41:1204–10.[doi:10.1097/COC.0000000000000449](http://dx.doi.org/10.1097/COC.0000000000000449) pmid:http://www.ncbi.nlm.nih.gov/pubmed/29672367 [PubMed](http://jitc.bmj.com/lookup/external-ref?access_num=http://www.n&link_type=MED&atom=%2Fjitc%2F8%2F1%2Fe000205.atom)