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ABSTRACT
Background  It is encountering the dilemma of lacking 
precise biomarkers to predict the response to neoadjuvant 
chemoimmunotherapy (NACI) and determine whether 
patients should use immune checkpoint inhibitors (ICIs) 
in early breast cancer (BC). We aimed to develop a gene 
signature to predict NACI response for BC patients and 
identify individuals suitable for adding ICIs.
Patients and methods  Two I-SPY2 cohorts and one 
West China Hospital cohort of patients treated with 
NACI were included. Machine learning algorithms 
were used to identify key genes. Principal component 
analysis was used to calculate the ImPredict (IP) 
score. The interaction effects between biomarkers 
and treatment regimens were examined based on the 
logistic regression analysis. The relationship between 
the IP score and immune microenvironment was 
investigated through immunohistochemistry (IHC) and 
multiplex IHC.
Results  The area under the curves of the IP score 
were 0.935, 0.865, and 0.841 in the discovery cohort, 
validation cohort 1, and in-house cohort. Marker-
treatment interaction tests indicated that the benefits 
from immunotherapy significantly varied between 
patients with high and low IP scores (p for interaction 
<0.001), and patients with high IP scores were more 
suitable for immunotherapy addition.
Conclusions  Our IP model shows favorable performance 
in predicting NACI response and is an effective tool for 
identifying BC patients who will benefit from ICIs. It may 
help clinicians optimize treatment strategies and guide 
clinical decision-making.

INTRODUCTION
Breast cancer (BC) is the most prevalent 
malignant tumor among women globally and 
is classified into hormone receptor-positive/
human epidermal growth factor receptor 
2-negative (HR+/HER2−), HR+/HER2+, 
HR−/HER2+, and triple-negative breast 
cancer (TNBC).1 2 BC was previously consid-
ered “weakly immunogenic” among solid 
tumors. In recent years, omics researchers 
have uncovered that TNBC exhibits higher 

chromosomal instability, frequent copy 
number alterations, and complex struc-
tural rearrangements than the other BC 
subtypes.3 4 It also has more lymphocyte infil-
tration and a higher programmed cell death 
ligand 1 (PD-L1) positivity rate, thus immuno-
therapy is mainly tested and applied in TNBC 
at first.5 The Food and Drug Administration 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Immune checkpoint inhibitors (ICIs) have revolution-
ized the treatment of breast cancer (BC) patients 
in the past few years. However, the clinical bene-
fit of ICIs varies greatly among individuals. Current 
biomarkers are insufficient to predict the immu-
notherapy response for BC patients, especially for 
early BC. For example, both the KEYNOTE-522 and 
IMpassion031 show that the benefit gained from ICIs 
is not correlated with programmed cell death ligand 
1 (PD-L1) positivity, a commonly used biomarker in 
clinical practice. Hence, developing precise predic-
tive biomarkers remains an urgent medical need.

WHAT THIS STUDY ADDS
	⇒ The ImPredict (IP) score shows robust performance 
for predicting neoadjuvant chemoimmunotherapy 
response in two cohorts of the I-SPY2 clinical trial 
and one in-house cohort. Importantly, the IP score is 
a promising tool to identify patients who are recom-
mended for ICI combination therapy. Moreover, the 
IP model characterizes the immune microenviron-
ment and provides additional prognostic information 
for triple-negative BC.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ In clinical practice, PD-L1 fails to determine wheth-
er to use ICI drugs during the neoadjuvant che-
motherapy phase in early BC. Our work proposes 
a novel and efficient model for the optimization of 
therapeutic strategies and precision oncology for 
early BC patients. Patients with high IP scores are 
strong candidates for ICI therapy combined with 
chemotherapy.
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has approved pembrolizumab for the treatment of early 
high-risk TNBC and PD-L1 Combined Positive Score 
(CPS) ≥10 advanced or metastatic TNBC. Besides, some 
ongoing clinical trials, such as the CheckMate 7FL and 
KEYNOTE-756 studies, suggest that early high-risk HR+/
HER2− BC can also benefit from immune checkpoint 
inhibitors (ICIs).6 7

Although immunotherapy has shown potential in 
treating BC, it is encountering the dilemma of lacking 
precise predictive biomarkers for ICI treatment efficacy. 
One significant issue is that only part of patients respond 
to ICI, and it needs urgent solutions in patient selection 
for ICI therapy, especially for early BC.8 PD-L1 immu-
nohistochemistry (IHC) is the most extensively adopted 
biomarker in clinical practice. Nevertheless, it remains 
controversial due to the high heterogeneity, different 
detective standards, and various positive criteria.9 More-
over, KEYNOTE-522 and IMpassion031 studies have 
demonstrated that early TNBC patients could benefit 
from ICI, irrespective of the PD-L1 positivity.10 11 Some 
other biomarkers, such as tumor mutation burden 
(TMB) and microsatellite instability, are not appropriate 
biomarkers for BC. Evidence for these two markers 
mainly focuses on solid tumors such as lung cancer and 
colorectal cancer.12 13 It is rare for BC patients to exhibit 
TMB ≥10 mut/Mb or be detected as mismatch repair 
deficiency.14 15

Some studies have attempted to develop molecular 
models like IFNγ-6, GEP, and Pan_F_TBRs in melanoma 
and urothelial cancer.16 17 Given the complexity and 
heterogeneity of the tumor microenvironment (TME), 
these molecular markers were not necessarily suitable 
for BC. Considering the lack of ideal biomarkers for 
immunotherapy in early BC, we constructed a novel gene 
model for predicting ICI response, ImPredict (IP), using 
the gene array data from the early HER2− BC immu-
notherapy cohort, and validated it in two independent 
cohorts. IP model can predict the pathological complete 
response (pCR) outcomes of HER2− BC patients who 
receive neoadjuvant chemoimmunotherapy (NACI) and 
is expected to screen patients suitable for ICI addition. 
Furthermore, we investigated the relationship between 
the IP score and the TME of TNBC and conducted an 
exploratory analysis to figure out whether the IP score 
could provide additional prognostic information for 
TNBC.

METHODS
Data collection
The discovery cohort (N=69; TNBC: N=29, HR+: N=40) 
was derived from the pembrolizumab arm in the I-SPY2 
clinical trial,18 with gene array data and clinical informa-
tion downloaded from GSE194040. Validation cohort 1 
(N=71; TNBC: N=21, HR+: N=50) was the durvalumab/
olaparib (DO) arm of the I-SPY2 clinical trial,19 and its 
gene chip data and clinical information were downloaded 
from GSE173819. Cohort A for the marker-treatment 

interaction test included data from 246 patients (neoad-
juvant chemotherapy (NACT) alone: N=177, NACT plus 
pembrolizumab: N=69), and cohort B included data from 
105 patients (NACT alone: N=34, NACT plus DO: N=71). 
The TNBC cohort of The Cancer Genome Atlas (TCGA) 
(N=147) was obtained from the GDC Data Portal. The 
immune phenotype cohort (N=43) was downloaded from 
GSE177043.20

Validation cohort 2 (N=55) and TNBC RNA-sequencing 
(RNA-seq) cohort (N=53) were collected from the West 
China Hospital (WCH). Validation cohort 2 included 
TNBC patients treated with NACI at WCH from January 
2020 to June 2023. Pathological responses were reviewed, 
and pCR is defined as no invasive cancer in both the 
primary lesion (ductal carcinoma in situ may be present) 
and regional lymph nodes (ypT0/Tis ypN0). The RNA-
seq cohort was collected from the treatment-naïve TNBC 
patients before surgery in WCH from January 2022 to 
October 2022.

Differentially expressed genes analysis
Differentially expressed genes (DEGs) were identified 
using the R package “limma” according to the cut-off of 
|Log2FC|>0.5 and adjusted p value <0.05. The adjusted 
p value was calculated by the Benjamini-Hochberg 
correction.

Weighted gene correlation network analysis
The gene co-expression network of discovery cohort was 
generated by the R package “WGCNA.”21 For each pair 
of genes, their similarity was calculated based on the 
expression patterns. The similarity matrix was converted 
into an adjacency matrix by raising the similarity to a 
positive power β (soft threshold) to satisfy the scale-free 
property. Then, the weighted adjacency matrix was trans-
formed into a topological overlap matrix (TOM), and 
accordingly, the dissimilarity (1−TOM) was introduced 
to generate the systematic clustering tree between genes. 
Furthermore, module identification was conducted by 
a hybrid dynamic shear tree with the criterion of 30 as 
the minimum number of genes in each gene module. 
Relationships between modules and sample traits were 
analyzed by calculating the correlation between the 
traits and module eigengenes, which are the first prin-
cipal components of the expression data of all genes in 
the modules and are considered representative of the 
modules. Finally, the gene modules with p value <0.05 
were recognized as those that were significantly associ-
ated with pCR, and the members in these modules were 
selected for candidate genes.

Identification of key genes associated with pCR
To determine the key genes associated with pCR, we 
performed gene selection using four machine learning algo-
rithms. Boruta is an algorithm employed for feature selection 
based on the Random Forest classification. We obtained the 
gene importance using the “Boruta” function embedded 
in the “Boruta” R package with maximum iterations up to 
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300 times, and then confirmed variables were selected as 
key genes for model construction. Least absolute shrinkage 
and selection operator (LASSO) regression incorporates 
the L1 regularization term, realizing sparsity by limiting the 
sum of the absolute values of the parameter vectors. This 
enables LASSO to carry out feature selection by estimating 
numerous parameters to be zero. We choose the variables 
with non-zero parameters as the model genes. In this 
study, we conducted LASSO regression with the “glmnet” 
R package. The optimal value of λ was determined using 
10-fold cross-validation. In the end, λ was selected based 
on a one-SE criterion. Support Vector Machine-Recursive 
Feature Elimination (SVM-RFE) is a sequential backward 
selection algorithm based on the maximum margin prin-
ciple of SVM. It trains the model with samples, then scores 
and ranks each feature, removes the feature with the lowest 
score, trains the model again with the remaining features, 
iterates the process, and finally selects the required number 
of features. SVM-RFE was conducted using the “e1071” R 
package and codes from https://github.com/johncolby/​
SVM-RFE. eXtreme Gradient Boosting (XGBoost) is a 
type of gradient-boosting algorithm, which builds a model 
by progressively constructing numerous decision trees. 
XGBoost assigns an importance score for every feature in 
the input data, aiding in identifying the most significant 
features in the model. The “xgboost” R package was used to 
achieve key gene selection.

IP signature construction
First, we analyzed the DEGs between pCR and residual 
disease (RD) samples and identified gene modules 
associated with pCR through weighted gene correla-
tion network analysis (WGCNA). Next, the overlapping 
genes between DEGs and WGCNA genes were retained 
for subsequent analysis. Four machine learning algo-
rithms were conducted to select the key genes correlated 
with pCR, respectively. Genes highly expressed in pCR 
samples were defined as gene set P (positive genes), and 
genes highly expressed in RD samples were defined as 
gene set N (negative genes). The P and N gene sets were 
extracted and their expression was then z-score trans-
formed. Finally, principal component analysis (PCA) was 
performed and principal component 1 (PC1) was calcu-
lated to serve as the gene signature score. This approach 
has the advantage of focusing the score for the set on 
the largest block of well-correlated (or anti-correlated) 
genes in the gene set while down-weighting contributions 
from genes that do not track with other set members.17 IP 
score was defined using a method similar to the Genomic 
Grade Index22:

	﻿‍ IP score =
∑

PC1P −
∑

PC1N‍�

where PC1P and PC1N represent the first principal 
component of gene set P and gene set N, respectively.

Transcriptomic-based predictive biomarkers
PD-L1 is the gene expression of CD274. IFNγ-6 gene signa-
ture was an average gene expression-based biomarker. T 

cell-inflamed GEP score was calculated as the weighted 
sum of signature gene expressions.16 Antigen-presenting 
machinery (APM) signature was calculated using the 
single-sample gene set enrichment analysis (ssGSEA),23 
and pan-fibroblast TGF-β response signature (Pan-F-
TBRs) was calculated based on PCA using the “calcu-
late_sig_score” function implemented in the “IOBR” R 
package.24 The detailed information of these signatures 
was summarized in online supplemental table S3.

RNA extraction
RNA was isolated from the pre-treatment FFPE specimen 
using the miRNeasy FFPE Kit (QIAGEN, Cat#217504) 
according to the manufacturer”s protocol. The quality 
and amount of RNA were assessed by NanoDrop OneC 
(Thermo Fisher Scientific). Specimens with adequate 
RNA which had an optical density of 1.8≤260/280 ratio 
≤2.1 and a total yield ≥3 µg were eligible for reverse 
transcription.

Real-time quantitative PCR
We evaluated the IP score of the WCH immunotherapy 
cohort by quantifying the expression of 36 signature 
genes using the real-time quantitative PCR assay. Reverse 
transcription was performed using the HiScript III 1st 
Strand cDNA Synthesis Kit (R312, Vazyme). For expres-
sion analysis, all genes were detected in technical trip-
licates using the Taq Pro Universal SYBR qPCR Master 
Mix (Q712, Vazyme). QuantStudio 6 Flex Real-Time PCR 
System (Applied Biosystems) was applied for RNA quan-
tification. Relative gene expression levels were quantified 
using the 2−ΔCt method with the mean level of GAPDH 
and ACTB as an internal reference. Primers for 36 model 
genes and 2 reference genes were listed in online supple-
mental table S7.

Statistics analysis
The receiver operating characteristic (ROC) curve was 
visualized and the area under the curve (AUC) was 
calculated to evaluate the predictive performance of 
biomarkers for therapy response using the “pROC” R 
package. The CI of AUC was obtained by the bootstrap 
resample embedded in the “roc” function of the “pROC” 
package. Marker-treatment interaction analysis was 
performed for each biomarker, which is a test for interac-
tion based on the logistic regression models. A significant 
interaction test indicates a differential treatment effect 
according to the biomarker. The Kaplan-Meier method 
was applied to generate survival curves, and the log-rank 
test was used to determine the statistical significance of 
differences. Cox proportional hazard regression models 
were used to estimate the HRs with 95% CIs for variables. 
Time-dependent ROC analysis was performed using the 
R package “timeROC.” The nomogram model was gener-
ated via the R package “rms.” Statistical difference in the 
distribution of continuous variables between two groups 
was compared by the Wilcoxon rank-sum test, and that of 
three or more groups was examined by the Kruskal-Wallis 
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test. Correlation coefficients were calculated by Spear-
man”s correlation analyses. The χ2 test or Fisher”s exact 
test was used to analyze categorical variables distribution. 
A two-sided p value <0.05 was considered statistically 
significant. All statistical analyses were performed using 
SPSS (V.25.0) and R software (V.4.1.1).

RESULTS
Construction of the IP model
The overall design of this study was displayed in online 
supplemental figure S1. In the discovery cohort, 462 
DEGs were identified between pCR (N=31) and RD 
((N=38) patients with the cut-off of adj. p value <0.05 and 
|Log2FC|>0.5, including 265 downregulated and 197 
upregulated genes in the pCR group (figure  1A). In 
the WGCNA process, the soft threshold β was set to 
9 to construct a gene co-expression network (online 
supplemental figure S2A), and then 29 gene modules 

were determined, as represented by different colors. 
The heatmap revealed the eigengenes adjacency of 
these modules (online supplemental figure S2B). Subse-
quently, the correlations between gene modules and 
clinical traits, including MammaPrint status and pCR, 
were analyzed. Module-trait relationship indicated that 
five modules (dark red, green, gray, pink, salmon) were 
positively correlated with pCR, and five modules (yellow, 
midnight blue, light yellow, magenta, grey60) were 
negatively correlated with pCR according to the crite-
rion of p value <0.05 (figure 1B). Next, 405 overlapping 
genes between 462 DEGs and 7114 WGCNA genes were 
extracted as candidates (figure 1C). GO analysis revealed 
that candidate genes highly expressed in the pCR group 
were enriched in immune response, lymphocyte acti-
vation, cytokine production, etc, whereas those highly 
expressed in the RD group were enriched in hormone 
regulation, cell migration, metabolic process, etc (online 

Figure 1  The construction process of IP signature. (A) Volcano plot of DEGs in the pCR group versus the RD group 
(|Log2FC|>0.5; p<0.05). (B) Relationships between the module eigengenes and clinical traits. The red and blue boxes indicate 
modules positively and negatively related to pCR, respectively (p<0.05). (C) IP signature is built using the key genes identified 
by four machine-learning algorithms. DEGs, differentially expressed genes; IP, ImPredict; LASSO, least absolute shrinkage and 
selection operator; pCR, pathological complete response; RD, residual disease; SVM-RFE, Support Vector Machine-Recursive 
Feature Elimination; WGCNA, weighted gene correlation network analysis; XGBoost, eXtreme Gradient Boosting.
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supplemental figure S3A, B). Furthermore, four different 
machine learning algorithms were used to reduce noise or 
redundant genes, and the retained genes were subjected 
to a PCA-based procedure to develop gene signatures. By 
comparing the AUCs of the four gene sets derived from 
four algorithms, the final prediction signature was deter-
mined (figure 1C).

After gene selection, 36, 29, 25, and 74 genes were 
identified by the Boruta, XGBoost, LASSO, and SVM-
RFE (online supplemental figure S4A–D, online 
supplemental table S1), respectively. For all patients, 
TNBC subgroup, and HR+ subgroup in the discovery 
cohort, all four signatures exhibited significantly 
higher scores in the pCR group compared with the 

Figure 2  Predictive performances of IP score and five biomarkers in the discovery set and validation set 1. (A–B) Distribution 
of the IP score in the discovery set (A) and validation set 1 (B). (C–D) ROC curves of the IP score and five biomarkers in 
the discovery set (C) and validation set 1 (D). (E–F) AUCs of the IP score and five biomarkers in the discovery set (E) and 
validation set 1 (F). APM, antigen-presenting machinery; AUC, area under the curve; HR, hormone receptor; IP, ImPredict; 
pCR, pathological complete response; PD-L1, programmed cell death ligand 1; RD, residual disease; ROC, receiver operating 
characteristic; TNBC, triple-negative breast cancer.
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RD group (online supplemental figure S5A–D). In the 
validation cohort 1, only the signature score which 
was based on the 36 genes selected by the Boruta algo-
rithm was significantly higher in the pCR group than 
in the RD group, regardless of the patient subgroups. 
Whereas, no significant difference was observed in 
the other three signature scores between the pCR and 
RD groups of TNBC patients (online supplemental 
figure S6A–D). Besides, only the Boruta signature 
score reached an AUC of above 0.8 in every subgroup 
of the discovery cohort (all: 0.935; TNBC: 0.989; HR+: 
0.890) and validation cohort 1 (all: 0.865; TNBC: 
0.833; HR+: 0.895), demonstrating that it is the most 
robust one among the four signatures (online supple-
mental figure S7A–D, online supplemental table S2). 
Therefore, we adopted the Boruta signature as the 
final IP model.

Predictive performances of the IP score and five gene 
expression-based signatures
We observed that TNBC exhibited a higher IP score 
than HR+ BC, which is consistent with the higher 
response rate of TNBC (online supplemental figure 
S8A,B). As illustrated in the bar plots, pCR patients 
showed a higher IP score than RD patients in the 
discovery cohort (figure  2A) and validation cohort 
1 (figure  2B). In recent years, several predictive 
biomarkers for immunotherapy have been developed. 
To compare their prediction performances with the IP 
score, we calculated these biomarker scores based on 
the descriptions in the original publications (online 
supplemental table S3). ROC analysis displayed that 
the discrimination ability of the IP score was supe-
rior to PD-L1 mRNA, Pan_F_TBRs, APM, IFNγ-6, 
and GEP (figure  2C–F, online supplemental figure 
S9A, B, online supplemental table S4). Further-
more, we collected the data of STAT1, Mitotic, and 
ESR1_PGR_ave signatures in the validation cohort 1, 
which were considered to be associated with pCR in 
the biomarker analysis of the original citation. The IP 
score showed superior performance than the Mitotic 
signature and tended to perform better than the 
STAT1 and ESR1_PGR_ave signatures in all patients 
(online supplemental figure S10A–C, online supple-
mental table S5). Besides, DCA demonstrated that the 
IP score achieved higher overall net benefit compared 
with the other signatures (online supplemental figure 
S11A–D). Taken together, these results suggest that 
the IP score is a more excellent biomarker for immu-
notherapy response prediction.

Validation in an in-house immunotherapy cohort
To further test the predictive power of the IP signa-
ture, we next collected a validation cohort 2 including 
55 patients from WCH, all of whom were diagnosed 
with TNBC and treated with NACI, and their baseline 
information was summarized in online supplemental 

table S6. The distribution of IP scores in the valida-
tion cohort 2 is displayed in figure 3A. Consistent with 
the above results, pCR patients showed a significantly 
higher IP score than the RD patients (figure 3B), and 
there was a rising trend for the IP score as the Miller-
Payne grading increased (figure  3C, Kruskal-Wallis 
test, p=6.3e-05). Moreover, ROC analysis demon-
strated that the AUC of the IP score reached 0.841 
(figure  3D). We assessed the predictive power of 
PD-L1 CPS in 24 patients. The AUC of PD-L1 CPS was 
0.750, which was inferior to the IP score (figure 3E). 
Univariate logistic regression analysis indicated that 
the IP score, Ki-67, and tumor stage were statistically 
significant for the pCR outcome (figure  3F). Then 
the three variables were input into the multivariate 
logistic regression analysis, which suggested that 
the IP score is an independent predictor for pCR 
(figure 3G).

IP score is a promising biomarker to identify patients 
benefiting from ICI
To explore whether the IP score could predict 
the benefit of ICI addition, we collected the corre-
sponding NACT alone arms of the discovery and 
validation set 1 in the I-SPY2 trial. The scores of IP 
and five molecular signatures were calculated, and 
for each signature, the “high” versus “low” groups 
were divided by the median of signature score or the 
optimal cut-off for predicting pCR in the immuno-
therapy arm. Further, we examined the interaction 
between treatment and biomarkers through the 
logistic regression analysis which incorporated the 
treatment-by-biomarker interaction term for pCR. 
In cohort A grouped by the median value of the IP 
score, the pCR rate of the NACT+pembro arm was 
significantly higher than that of the NACT arm in 
the IP-high group (overall: 81.8% vs 20.0%, p<0.001; 
TNBC: 79.2% vs 18.3%, p<0.001; HR+: 88.9% vs 
26.3%, p<0.01), whereas there was no significant 
increase in the pCR rate of the NACT+pembro arm 
compared with the NACT arm in IP-low group 
(online supplemental figure S12A). In cohort A 
grouped by the median values of the other markers, 
the NACT+pembro arm exhibited an increasing trend 
in pCR rates than the NACT arm in both high and 
low groups (online supplemental figure S12B–E). 
Notably, the marker-treatment interaction test was 
significant for the IP score but not for PD-L1, APM, 
Pan_F_TBRs, IFNγ-6, and GEP (figure  4A). Besides, 
we also divided cohort A according to the optimal cut-
off value of each signature in the NACT+pembro arm 
and performed analyses as above. Among these 
biomarkers, the difference in pCR benefit brought by 
pembrolizumab was most pronounced in the IP-high 
group (online supplemental figure 13A–E), and 
the p value of the IP score in the marker-treatment 
interaction test was the most significant (figure  4B, 
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IP: p< 0.001, PD-L1: p=0.016, Pan_F_TBRs: p=0.719, 
APM: p=0.054, IFNγ-6: p=0.033, GEP: p=0.076). More-
over, these analyses were repeated in cohort B. It 
was discovered that regardless of the grouping way, 
the NACT+DO arm exhibited a significantly higher 
pCR rate than the NACT arm in the IP-high group, 
but not in the IP-low group (online supplemental 
figure S14A). However, in both high and low groups 
divided by the other biomarkers, the pCR rates were 
higher in the NACT+DO arm than in the NACT arm 
(online supplemental figure S14B–E). In the marker-
treatment interaction test, the p value of the IP score 
remained the most significant, though it did not meet 
the 0.05 standard, which may be due to the limitation 
of the sample size (online supplemental figure S15A, 
B). To sum up, the addition of immunotherapy to 
NACT increases the pCR rates in IP-high patients but 
not the IP-low patients and the IP score is more effec-
tive than the other biomarkers in screening patients 
suitable for immunotherapy addition.

Associations of the IP score with immune microenvironment 
in TNBC
We examined the relationships between the IP score 
and extrinsic/intrinsic immune escape mechanisms 
of the TNBC tumors using the TCGA-TNBC (N=147) 
and WCH-TNBC (N=53) cohorts. The high and low IP 
groups were divided by the IP score median in these two 
cohorts. The IP-high group exhibited low tumor purity, 
prompting the diversity of TME in patients with high 
IP scores (online supplemental figure S16A). Both the 
CYT score and ImmuneScore were positively correlated 
with the IP score, demonstrating an activated immune 
response and more effector immune cell infiltration in 
IP-high patients (online supplemental figure S16B). 
Additionally, the IP-high group had a higher abundance 
of CD8+ T cells, B cells, NK cells, and mono/myeloid 
cells, while the IP-low group was infiltrated with more 
immunosuppression cells, including neutrophils, endo-
thelial cells, and fibroblasts (online supplemental figure 
S16C).25 In line with these results, cytokine expression 

Figure 3  Validation of the IP score in an in-house immunotherapy cohort. (A) Distribution of the IP score in the WCH 
immunotherapy cohort. (B) pCR patients show a significantly higher IP score than RD patients (Wilcoxon rank-sum test, 
p<0.0001). (C) The IP score increases with the Miller-Payne upgrade (Kruskal-Wallis test, p=6.3e-05). (D–E) ROC curves of the 
IP score (D) and PD-L1 CPS (E) in the WCH immunotherapy cohort (IP: N=55, PD-L1: N=24). (F) Univariate logistic regression 
analysis indicates that the IP score, Ki-67, and tumor stage are statistically significant predictors for the pCR. (G) Multivariate 
logistic regression analysis including IP score, Ki-67, and tumor stage. AUC, area under the curve; CPS, Combined Positive 
Score; IP, ImPredict; pCR, pathological complete response; PD-L1, programmed cell death ligand 1; RD, residual disease; ROC, 
receiver operating characteristic; WCH, West China Hospital.
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analysis revealed that numerous members of chemok-
ines, interleukins, interferons, and receptors were highly 
expressed in the IP-high group, whereas an increased 
secretion of immunoinhibitory cytokines was observed in 
the IP-low group, such as platelet-derived growth factor 
A and D, transforming growth factor-β3, vascular endo-
thelial growth factor A and C, etc (online supplemental 
figure S16D). TMB was reported to be associated with 
immunotherapy response in solid tumors, but there was 
no significant correlation between TMB and IP score in 
the TCGA-TNBC cohort (online supplemental figure 
S17A). Two innate immunity-sensing pathways, cGAS-
STING and NLRP3 inflammasome, were more active in 
the IP-high group (online supplemental figure S17B). 
Almost all histocompatibility complex (MHC) molecules 
as well as co-stimulatory and co-inhibitory molecules 
showed higher expression in the IP-high group (online 
supplemental figure S17C, D). T-cell receptor and B-cell 
receptor (BCR) clonalities were significantly increased 

in the IP-high group, in which BCR evenness was signifi-
cantly lower (online supplemental figure S17E). GSEA 
demonstrated that the IP-high group was enriched with 
pathways related to immune response, (figure 5A), which 
were corroborated by the GSEA based on KEGG and 
Reactome pathways (online supplemental figure S18A, 
B). We further validated the above discoveries in clinical 
specimens. H&E-stained pathological sections exam-
ination indicated that the IP-high TNBC was infiltrated 
with more stromal and intratumoral tumor-infiltrating 
lymphocytes (online supplemental figure S19A–D). We 
next performed IHC staining for representative markers 
in the WCH-TNBC cohort (N=52) and observed that 
the IP-high group showed weaker CDH2, CD31, CA9 
expression and stronger MHC-I, CD8, CD4, CD20 levels 
(figure 5B–E).

We further investigated the associations of the IP score 
with CD8+ T cell spatial localization and two CD8+ T cell 
subtypes. According to the CD8 IHC stain, three main 

Figure 4  Marker-treatment interaction test in cohort A. (A) Marker-treatment interaction test when the patients are grouped by 
the medians of signature scores in cohort A. (B) Marker-treatment interaction test when the patients are grouped by the optimal 
cut-off of predicting pCR in the immunotherapy arm of cohort A. aORs are log10 transformed. bORs are HR-adjusted and log10 
transformed. APM, antigen-presenting machinery; IP, ImPredict; NACT, neoadjuvant chemotherapy; PD-L1, programmed cell 
death ligand 1.
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spatial phenotypes were defined (figure  6A): inflamed 
(N=16, tumor with CD8+ T cell infiltration in tumor 
center and invasive margin), excluded (N=17, tumor 
with CD8+ T cell embedded surrounding tumor border) 
and desert (N=19, tumor devoid of CD8+ T cell infiltra-
tion). We found that the inflamed phenotype presented 
a higher IP score than the desert and excluded pheno-
types, and the IP-high group included more inflamed 
phenotypes (figure 6B). Similar results were also found 
in the public GSE177043 cohort (figure 6C). In addition 
to immunophenotypes, we evaluated the abundances 
of cytotoxic CD8+ T cell (GZMB+CD8+) and stem/
progenitor-like CD8+ T cell (TCF1+CD8+) using mIHC 

imaging of 50 TNBC samples (figure  6D). Quantitative 
analysis demonstrated that the IP-high group exhibited 
significantly higher abundances of cytotoxic CD8+ T cells 
and stem/progenitor-like CD8+ T cells (figure 6E).

Association of the IP score with TNBC clinical characteristics
Finally, we attempted to investigate whether the IP score 
is associated with clinical characteristics and reflects the 
clinical prognosis of TNBC. Notably, the IP-high group 
included a higher proportion of patients with basal subtype 
(figure 7A), and comprised more patients with the (basal-
like1) BL1 and immunomodulatory (IM) subtypes, while 
the IP-low group consisted of more luminal androgen 

Figure 5  Differences in the tumor microenvironment indicators between the high and low IP groups in the WCH-TNBC cohort. 
(A) Volcano plot displaying the differently enriched HALLMARK pathways identified by gene set enrichment analysis in the high 
and low IP groups. (B) Representative images of CD31, CA9, and CDH2 IHC. (C) Differences in the CD31, CA9, and CDH2 IHC 
levels between the high and low IP groups. (D) Representative images of MHC-I, CD8, CD4, and CD20 IHC. (E) Differences in 
the MHC-I, CD8, CD4, and CD20 IHC levels between the high and low IP groups. IHC, immunohistochemistry; IP, ImPredict; 
TNBC, triple-negative breast cancer; WCH, West China Hospital.
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receptor (LAR) and mesenchymal-like (MES) subtypes 
(figure 7B, C). The IP-high group showed more immune-
enriched (IE) phenotypes, while the IP-low group included 
more immune-enriched with fibrotic (IE/F), fibrotic 
(F), and immune-depleted (D) phenotypes (figure  7D). 
Besides, the IP-low group exhibited significantly poorer 
disease-specific survival (DSS) and overall survival (OS) 
compared with the IP-high group in the TCGA-TNBC 
cohort (figure 7E, F). More importantly, the IP score was 
also a prognostic indicator for DSS and OS, independent of 
histology type, pathological tumor stage, and pathological 
lymph node stage (N stage) (figure 7G, H). Considering 

the equal effects of the N stage and IP score for evaluating 
prognosis, we performed survival analysis of high and low 
IP groups in different N stages. Kaplan-Meier analysis indi-
cated that the IP-low patients showed poorer DSS and OS 
compared with the IP-high patients in the N0 and N1-3 
groups (online supplemental figure S20A–D). IP score 
seemed to perform better in stratifying patients into high-
risk and low-risk in the N1-3 group than in the N0 group. 
Next, we developed two nomograms to predict DSS and 
OS: the DSS nomogram integrating N stage and IP score 
(online supplemental figure S20E), and the OS nomo-
gram integrating histology, N stage, and IP score (online 

Figure 6  Associations of the IP score with immunophenotypes and CD8 subgroups in TNBC. (A) Representative images of 
CD8+ T cell spatial phenotypes in the tumor center and border. (B–C) Differences in the IP levels of three immunophenotypes 
and the portions of three immunophenotypes in the high and low IP groups of the WCH-TNBC cohort (B) and GSE177043 
(C). (D) Representative mIHC images of TCF1, CD8, and PanCK. (E) Comparison of the abundances of TCF1+CD8+ T cells and 
GZMB+CD8+ T cells in the high and low IP groups. GSEA, gene set enrichment analysis; IP, ImPredict; TNBC, triple-negative 
breast cancer; WCH, West China Hospital.
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supplemental figure S20F). The C-indices of combined DSS 
and OS nomogram models were greater than 0.8. ROC 
analysis showed that the combined models were superior 
to the IP score for predicting the 3-year and 5-year DSS/
OS, but inferior to the IP score for predicting the 8-year 
DSS/OS (online supplemental figure S20G–N). Therefore, 
it appears that the IP score can provide additional informa-
tion for the prognosis evaluation of TNBC.

Discussion
TNBC patients are prone to earlier relapse and have a 
poorer prognosis than other molecular subtypes. Previ-
ously, chemotherapy was the only systemic treatment for 
TNBC.26 Recent studies have confirmed that the PD-1 
inhibitor pembrolizumab is effective in TNBC, changing 

the pattern of TNBC treatment.10 11 27 Emerging evidence 
demonstrates that ICI combined with chemotherapy 
can generate a significant increase in pCR rate for HR+/
HER2− patients.6 7 However, not all patients can benefit 
from immunotherapy. Due to the potential toxicity, uncer-
tain efficacy, and economic burden of immunotherapy, it 
is necessary to discriminate potential responders through 
effective biomarkers. Applications of existing biomarkers 
are controversial or insufficient in predictive power, thus 
developing predictive markers for immunotherapy in BC 
remains an urgent priority.9 In this study, we used the public 
I-SPY2 immunotherapy cohort and machine learning algo-
rithms to construct a predictive gene score. It is promising 
in determining the NACI response of HER2− BC patients 

Figure 7  Exploratory analysis for the associations of IP score with TNBC clinical characteristics in the TCGA-TNBC cohort. 
(A–D) Proportions of different molecular subtypes in the high and low IP groups of TNBC. (E–F) Kaplan-Meier survival curves 
of DSS (E) and OS (F) in the high and low IP groups. (G–H) Multivariate analysis for the DSS (G) and OS (H) in the TCGA-TNBC 
cohort. DSS, disease-specific survival; IP, ImPredict; OS, overall survival; TCGA, The Cancer Genome Atlas; TNBC, triple-
negative breast cancer.
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and screening patients who can benefit from immuno-
therapy. For TNBC, a high IP score indicates positive immu-
notherapy response, abundant immune infiltration, and an 
inflammatory phenotype, while a low IP score is related to 
immunosuppression and poor prognosis.

Unlike the advanced TNBC, the benefit of immuno-
therapy in early TNBC patients is irrelevant with PD-L1 
level. In the KEYNOTE-522 study concerning the early 
TNBC, event-free survival shows an increase after the 
addition of pembrolizumab to NACT, regardless of PD-L1 
expression status.28 KEYNOTE-355 study indicates that the 
progression-free survival benefits from pembrolizumab 
are only observed in PD-L1 positive (CPS>10) advanced/
metastatic TNBC.27 Likewise, when another ICI atezoli-
zumab (PD-L1 inhibitor) is used for neoadjuvant treatment 
of early TNBC, the increase in pCR rate is also indepen-
dent of PD-L1 positivity.11 While in the first-line treatment 
of advanced/metastatic TNBC, atezolizumab combination 
only brings benefit for the OS of PD-L1 positive patients.29 
In our study, the p for interaction of IP score in cohort A 
is the most significant, regardless of whether it is based on 
the median or the optimal cut-off grouping. In cohort B, 
possibly due to the small sample size of the chemotherapy 
group, the p for interaction of IP score does not reach statis-
tical significance, but it also remains the smallest among all 
signatures. These results indicate that the IP score is the 
most effective marker for identifying patients suitable for 
immunotherapy addition. Therefore, patients determined 
to have a high IP score are recommended to add ICI drugs, 
which might significantly increase the pCR rate.

As for our IP model, we observe that many positive genes 
are involved in lymphocyte activation (TSPAN33, DAPP1, 
GZMB), response to IFNγ (GBP1, IL12RB2), leukocyte 
migration (MCOLN2, CCL13), viral process (LAMP3), 
and antigen presentation (HLA-E), whereas the nega-
tive genes are enriched in G-protein signaling (GPRC5C, 
RADIL, RGS22), microtubule activity (CCDC74B, KIF3A, 
FAM179B), dehydrogenase activity (NQO1, DHRS2), 
extracellular matrix (UGDH), hypoxia (CA12), and angio-
genesis (VEZF1), which are considered immunosuppres-
sive.30–33 We construct the model using the PCA, which is a 
dimension reduction method. In brief, by employing PCA 
to extract PC1, we can obtain the main expression level of 
the gene set, thus eliminating the influence of some outlier 
genes on the whole.17 Unlike ssGSEA, PCA does not rely 
on the entire transcriptome data, making it applicable for 
small gene sets with good correlation. Considering that 
there are some challenges in terms of cost-effectiveness and 
technical aspects when obtaining the whole transcriptome, 
PCA is an ideal method for this IP model to be translated 
into a clinical-grade biomarker.

Our findings suggest that IP score is positively associated 
with immune infiltration and cytotoxic T-cell activity, but not 
with TMB. In line with our data, McGrail et al have demon-
strated that in some type II cancers including BC and pros-
tate cancer, CD8+ T cells do not increase with more new 
tumor antigens, and the former is usually the basis for effec-
tive immunotherapy response.34 These findings reflect the 

complexity of the immune system. Numerous mutations 
do not necessarily convert into immunogenic new anti-
gens. The quality of mutations, the production, and iden-
tification of new antigens, along with the intricate immune 
microenvironment, are also pivotal factors in eliciting an 
immune response.35

GSEA reveals that immunotherapy response is positively 
related to the IFN signaling and immune activation, but is 
also negatively affected by some pathways such as steroid 
hormone biosynthesis, fatty acid metabolism, epithelial-
mesenchymal transition, angiogenesis, etc. Interestingly, we 
also discover that the IM and IE subtypes, which have been 
confirmed to be more sensitive to ICIs,36 37 dominate in 
the IP-high group, while the LAR and MES types are more 
prevalent in the IP-low group. Previous studies have shown 
that the LAR TNBC exhibits enhanced hormone receptor 
signaling and fatty acid metabolism, and MES TNBC 
displays active EMT and angiogenesis activity,4 38 which are 
consistent with the aforementioned findings. In summary, 
our findings provide new insights into the mechanism 
link between the immunotherapy response and biological 
process, emphasizing the non-negligible role of some regu-
latory mechanisms in immunotherapy resistance. This may 
potentially facilitate the precision of immunotherapy and 
the development of drug combinations.

Some limitations in our study should be noted. First, 
the sample sizes of immunotherapy cohorts in our study 
are relatively small, and it needs future validation in a 
larger, prospective cohort to determine the cut-off of the 
IP score. Second, the heterogeneity of the baseline char-
acteristics may affect the predictive performance. We are 
trying to collect more samples and develop an integrated 
model incorporating clinicopathological factors to improve 
accuracy.

In conclusion, we established a robust model for 
predicting the NACI response of HER2− BC and selecting 
patients suitable for adding immunotherapy to NACT. This 
model is a promising tool to facilitate the optimization of 
immunotherapeutic regimens for HER2− BC patients.
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