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ABSTRACT
Background  The inflamed immune phenotype (IIP), 
defined by enrichment of tumor-infiltrating lymphocytes 
(TILs) within intratumoral areas, is a promising tumor-
agnostic biomarker of response to immune checkpoint 
inhibitor (ICI) therapy. However, it is challenging to define 
the IIP in an objective and reproducible manner during 
manual histopathologic examination. Here, we investigate 
artificial intelligence (AI)-based immune phenotypes 
capable of predicting ICI clinical outcomes in multiple solid 
tumor types.
Methods  Lunit SCOPE IO is a deep learning model 
which determines the immune phenotype of the tumor 
microenvironment based on TIL analysis. We evaluated the 
correlation between the IIP and ICI treatment outcomes 
in terms of objective response rates (ORR), progression-
free survival (PFS), and overall survival (OS) in a cohort of 
1,806 ICI-treated patients representing over 27 solid tumor 
types retrospectively collected from multiple institutions.
Results  We observed an overall IIP prevalence of 
35.2% and significantly more favorable ORRs (26.3% vs 
15.8%), PFS (median 5.3 vs 3.1 months, HR 0.68, 95% 
CI 0.61 to 0.76), and OS (median 25.3 vs 13.6 months, 
HR 0.66, 95% CI 0.57 to 0.75) after ICI therapy in IIP 
compared with non-IIP patients, respectively (p<0.001 
for all comparisons). On subgroup analysis, the IIP was 
generally prognostic of favorable PFS across major 
patient subgroups, with the exception of the microsatellite 
unstable/mismatch repair deficient subgroup.
Conclusion  The AI-based IIP may represent a practical, 
affordable, clinically actionable, and tumor-agnostic 
biomarker prognostic of ICI therapy response across 
diverse tumor types.

INTRODUCTION
Immune checkpoint inhibitors (ICI) have 
become a major part of the standard of care 
for various tumor types.1 Several predic-
tive and prognostic biomarkers, including 

programmed cell death ligand 1 (PD-L1) 
expression, high microsatellite instability/
mismatch repair deficiency (hereafter 
referred to as MSI), and tumor mutational 
burden (TMB) have been approved for 
use to guide ICI treatment decisions, but 
concern exists regarding their technical 
and clinical limitations.2 PD-L1 expression 
by immunohistochemistry (IHC) has been 
the most extensively investigated. However, 
pivotal studies supporting the Food and 
Drug Administration’s (FDA) ICI drug 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Recent studies have demonstrated potential asso-
ciation between the distribution of tumor-infiltrating 
lymphocytes (TIL) within the tumor microenviron-
ment and response to immune checkpoint inhibitor 
(ICI) therapies. However, manual evaluation of TILs 
can be time-consuming, labor intensive, and subject 
to interobserver variability.

WHAT THIS STUDY ADDS
	⇒ This study demonstrates the ability of an artifi-
cial intelligence (AI) model that runs on routine 
H&E-stained pathology whole-slide images of pre-
treatment tumor samples to predict ICI treatment 
outcomes in a real-world multicenter cohort of 
1,806 ICI-treated patients representing over 27 dif-
ferent solid tumor types.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ An AI-based assessment of immune phenotypes is 
associated with better clinical outcomes after ICI 
therapy across diverse solid tumor types, suggest-
ing its potential as a prognostic biomarker for ICI 
treatment planning.
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approvals have shown that PD-L1 IHC predicts ICI treat-
ment response in only 28.9% of cases,3 limited to specific 
tumor types. Furthermore, PD-L1 IHC performance 
and interpretation strongly rely on factors such as spec-
imen fixation method, the choice of antibody clone and 
staining platform, pathologist experience level, and the 
specific IHC scoring method used. Moreover, the thresh-
olds for PD-L1 positivity vary by cancer type and treat-
ment indication.4

MSI and TMB have recently been approved as tissue-
agnostic biomarkers of ICI response, as MSI and TMB-
high are associated with increased numbers of tumor 
neoantigens.5 6 However, the overall prevalence of MSI is 
less than 2% in pan-cancer studies,7 8 and estimation of 
TMB by next-generation-sequencing (NGS) has also been 
subject to technical and practical limitations. NGS testing 
has more stringent specimen requirements, a longer 
turnaround time, and higher costs. Although a cut-off of 
10 or more mutations per megabase (Mb) is often used 
for defining TMB-high, as per a recent FDA approval, this 
threshold is limited to the few tumor types investigated 
in one study6 and likely needs to be adjusted for other 
tumor types.9–12

Given the limitations of current biomarkers, there is a 
significant need for additional novel biomarkers that are 
more time and cost efficient, universally applicable, and 
able to capture a significant proportion of potential ICI 
responders. The inflamed immune phenotype (IIP) is a 
potential new biomarker which is directly associated with, 
or reflective of, the mechanism of action of ICIs, which 
impact the activity of immune cells within the tumor 
microenvironment (TME).

Clinical outcomes after ICI treatment have been asso-
ciated with the spatial localization of tumor-infiltrating 
lymphocytes (TILs) within the TME across several tumor 
types.13 14 TIL evaluation on H&E-stained tumor pathology 
slides collected during routine clinical care could poten-
tially serve as a novel tumor-agnostic biomarker for ICI 
response. Advances in artificial intelligence (AI), and 
specifically, deep learning, offer the possibility of more 
objective and reproducible automated computational 
TIL assessment.15 Building on our prior work in auto-
mated histopathologic cancer region segmentation and 
object detection,16 17 we recently demonstrated the ability 
of deep learning to perform TME immune phenotyping 
on H&E-stained whole-slide images (WSI) of non-small 
cell lung cancer (NSCLC) and nasopharyngeal carci-
noma, showing that the IIP is correlated with survival 
and response to ICI treatment.18–20 In the current study, 
we extend this work in a pan-cancer analysis to assess 
whether the immune phenotype (IP), as determined by 
an automated deep learning model which performs TIL 
analysis on routine H&E-stained WSI, might serve as a 
novel, clinically-actionable “tumor-agnostic” biomarker 
for predicting ICI treatment outcomes in a large, real-
world sample of patients representing over 27 different 
solid tumor types.

METHODS
Classification of the artificial intelligence-based immune 
phenotype
The Lunit SCOPE IO model (Lunit, Seoul, Republic of 
Korea)18 is a deep learning model that classifies the IP 
of the TME based on TIL distribution and density within 
H&E WSI. Model inference consists of two main stages: 
(1) tissue segmentation and cell detection, followed 
by (2) IP classification based on the outputs from the 
preceding stage.

Deep-learning-based tissue segmentation and cell detection stage
In this first stage, a convolutional neural network (CNN), 
hereafter referred to as the tissue segmentation model, 
performs semantic segmentation of cancer area (CA) 
and cancer stroma (CS) within a WSI (where CA refers 
to cancer epithelium or, in the case of non-epithelial 
tumors, the non-stromal tumor cells). In parallel, another 
CNN detects TILs using a cell detection model that iden-
tifies both tumor cells and lymphocytes. The data sets for 
training and tuning (optimizing) these CNNs were drawn 
from a pool of 17,296 H&E WSIs of over 24 different 
solid tumor types, including NSCLC and rarer cancer 
types (online supplemental tables 1a,b), collected from 
over nine different sources/institutions, scanned at 20× 
to 40× magnification (0.25 µm to 0.5 µm per pixel). As 
WSIs cannot be directly input into models due to their 
large size, representative 1,024×1,024 pixel patches were 
computationally extracted from pathologist-delineated 
tumor regions from each WSI, summing to a total effec-
tive area of 3.44×1010 µm2 for training and 8.75×109 µm2 
for tuning. The training and tuning sets for the tissue 
segmentation model consisted of 55,325 patches extracted 
from 13,962 WSIs and 13,962 patches extracted from 
849 WSIs, respectively, manually annotated for CA and 
CS regions by board-certified pathologists. The training 
and tuning subsets for the cell detection model consisted 
of 5,698 patches extracted from 2,485 WSIs and 1,925 
patches extracted from 849 WSIs, respectively, manually 
annotated by board-certified pathologists for tumor cells 
and lymphocytes by placing a point annotation within the 
nucleus of each cell. All annotations were independently 
verified by a second pathologist before being used as 
the ground truth for model development. A total of 104 
board-certified pathologists participated in annotation.

The architecture of the tissue segmentation model was 
based on DeepLabV3+,21 with a Resnet-34 backbone as 
a feature extractor.22 This model takes as input patches 
of size 1,024×1,024 pixels, performing semantic segmen-
tation on each patch (predicting the likelihood of each 
pixel belonging to the CA, CS, or background non-cancer 
tissue classes) and outputting a tissue class probability map 
of size 1,024×1,024 pixels. The model was trained using a 
Dice loss function23 and optimized using the Adam opti-
mizer24 with a learning rate of 0.0001, achieving a perfor-
mance of 0.82 and 0.67 on the Intersection-over-Union 
metric for CA and CS, respectively (please see online 
supplemental methods for additional details).
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The cell detection model was also based on the Deep-
LabV3+ and Resnet-34 architectures.21 22 Cell nuclei 
were annotated as points, but this model casts the cell 
detection problem as a dense pixel prediction task. We 
therefore generated a circle of radius 0.95 µm centered 
around each point annotation during the training stage 
and trained the model using a Dice loss function23 with 
Adam optimization24 with a learning rate of 0.002. The 
inputs to the model were also patches of size 1,024×1,024 
pixels, with the outputs being probability maps of size 
1,024×1,024 pixels where each pixel represents the likeli-
hood of a TIL existing in that location. A post-processing 
stage was applied to extract the location of the cells (in 
online supplemental methods). The F1-score for this 
model on lymphocyte detection was 0.69.

The performance of the tissue region segmentation 
and cell detection models was validated on a separate 
internal validation set consisting of 356 WSIs from over 
17 different tumor types collected from over 8 different 
sources/institutions (online supplemental table 2), 
scanned at 20× to 40× magnification (0.25 µm to 0.5 µm 
per pixel), with resultant area under the receiver oper-
ating characteristic (AUROC) values for segmentation of 
CA and CS and TIL detection of above 0.95 (figure 1B). 
The outputs from the preceding tissue segmentation and 
cell detection models were used in the subsequent IP clas-
sification stage.

Immune phenotype classification stage
In this stage, we sought to classify the tumor present in 
each patient’s WSI into one of three general IP.25 26 In 
the IIP, there is a high density of TILs present within the 
CA. In the immune excluded phenotype (IEP), TILs are 
abundant within the CS but excluded from the CA. In the 
immune desert phenotype (IDP), TILs are scarce within 
both the CA and CS.

To perform TIL analysis within WSI of various sizes, each 
WSI was divided into 1 mm2 grids, with the IP of each grid 
classified as IIP, IEP, or IDP based on empirically deter-
mined TIL density criteria (see next paragraph below). 
The overall WSI-level Inflamed Score (IS), Immune-
Excluded Score (IES), and Immune-Desert Score (IDS) 
were calculated by dividing the number of grids having 
that respective phenotype over the total number of grids 
analyzed within the WSI. If the WSI-level IS exceeded a 
prespecified threshold, that WSI was classified as having a 
WSI-level IIP. The overall workflow for IP classification is 
illustrated in figure 1A.

Determination of the TIL density cutoffs for grid-level IP 
classification and the cancer-type agnostic IS threshold for 
classification of an WSI as IIP was based on prior evidence 
demonstrating that a T-cell-inflamed gene expression 
profile (as characterized by the interferon-gamma respon-
sive gene (IFNG) signature) is predictive of ICI clinical 
response.27 We hypothesized that ICI responders would 
exhibit a stronger IFNG signature and comprise approx-
imately 25% of patients with pan-carcinoma. Therefore, 
the TIL density cut-off and optimal IS threshold were 

determined as those scores that predicted the upper 25% 
of IFNG signature levels in The Cancer Genome Atlas 
(TCGA) pan-carcinoma data set (n=7,454, online supple-
mental table 3)28 with the highest AUROC and greatest 
sum of sensitivity and specificity.

We found that an intratumoral TIL density cut-off of 200/
mm2 yielded the highest AUROC (0.7772) for predicting 
a 75th percentile or higher IFNG signature level. As the 
IFNG signature levels in the TCGA data set were derived 
from bulk sequencing data without distinction between 
cancer parenchyma and stroma, we set a consistent cut-
off of 200/mm² for stromal (CS) TILs to ensure a compa-
rable distribution to that observed in cancer parenchyma 
(CA). The IP of each grid was therefore classified using 
the following criteria: grid-level IIP, if the TIL density 
within the total CA in the grid is ≥200/mm2; grid-level 
IEP, if the TIL density within the total CA is <200/mm2 
and that within the total CS is ≥200/mm2; and grid-level 
IDP, if the TIL density is <200/mm2 in both the total CA 
and CS within the grid. At the 200/mm² TIL cut-off, an 
optimal IS of 19.479% resulted in the maximum sum of 
sensitivity (65.0%) and specificity (78.2%), irrespective of 
TMB status (AUROC 0.76 for the TMB-high population 
and 0.77 for the TMB-low population). Therefore, we set 
20.0% as the IS threshold for WSI-level IIP classification, 
regardless of cancer type (hereafter referred to as the 
universal threshold) (figure 1C, online supplemental table 
3).

ICI-treated patient data set
The final optimized Lunit SCOPE IO model was applied 
to an independent real-world data set (N=1,806 patients) 
of H&E-stained WSIs scanned at 40× magnification 
(0.25 µm per pixel), derived from pre-ICI treatment 
formalin-fixed, paraffin-embedded (FFPE) surgical resec-
tion and biopsy specimens with accompanying clinical 
outcomes, including progression-free survival (PFS), 
overall survival (OS), and best overall response (BOR) 
after ICI monotherapy or ICI combination therapy, as 
assessed by Response Evaluation Criteria In Solid Tumors 
(RECIST) V.1.1.29 The WSIs were collected from Stanford 
University Medical Center (Stanford, n=688), Samsung 
Medical Center (SMC, n=653), Seoul National University 
Bundang Hospital (SNUBH, n=269), Chonnam National 
University Hospital (CNUH, n=183), and Northwestern 
Memorial Hospital (Northwestern, n=13). ICI combina-
tion therapy regimens included at least one other anti-
neoplastic drug, such as conventional chemotherapy. All 
work was conducted in accordance with the Declaration 
of Helsinki for biomedical research, after institutional 
review board approval at each participating institution.

PD-L1 immunohistochemistry and other ancillary biomarker 
testing
PD-L1 IHC was performed using the US FDA-approved 
Dako PD-L1 IHC 22C3 PharmDx kit (Agilent Technolo-
gies, Santa Clara, California, USA), with scoring of PD-L1 
expression (%) determined using the Tumor Proportion 
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Figure 1  Pan-cancer performance validation of the Lunit SCOPE IO, AI-powered H&E-stained WSI analyzer, and classification 
of the immune phenotype. (A) Workflow for AI-powered TIL analysis and IP classification. (B) ROC curves for segmentation of 
CA and CS and TIL (LC) detection on the tuning (n=849) and internal validation sets (n=356). (C) ROC curves for determination 
of the optimal Inflamed Score threshold (universal threshold) for WSI-level IP classification (IIP vs non-IIP) in the TCGA data 
set (n=7,454). AI, artificial intelligence; AUROC, area under the ROC; CA, cancer area; CS, cancer stroma; IDP, immune-desert 
phenotype; IEP, immune-excluded phenotype; IFNG, interferon-gamma-responsive gene; IIP, inflamed immune phenotype; IP, 
immune phenotype; LC, lymphocyte; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas; TIL, tumor-
infiltrating lymphocyte; TMB, tumor mutational burden; WSI, whole-slide image.
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Score (TPS), representing the percentage of viable tumor 
cells showing partial or complete membranous staining 
for PD-L1 with 1+ to 3+ intensity.30

Determination of microsatellite status at Stanford was 
done using DNA mismatch repair IHC and/or MSI PCR. 
For MSI PCR, standard multiplex PCR amplification of a 
panel of five microsatellites (BAT-25, BAT-26, MONO-27, 
NR-21, and NR-24) was performed with comparison of 
tumor and normal samples from the same patient by the 
Stanford Molecular Pathology laboratory (order code: 
TMSI (Tumor Microsatellite Instability), additional assay 
details available at: https://stanfordlab.com/content/​
stanfordlab/en/test-details/t/TMSI.html). If two of five 
microsatellite loci showed a difference in length between 
tumor and normal samples, the tumor was designated 
MSI high. If only one locus showed a difference in length, 
the tumor was considered MSI low. If no loci showed a 
difference in length, the tumor was designated micro-
satellite stable. IHC for DNA mismatch repair proteins 
was performed using standard protocols with mono-
clonal antisera reacting to MLH1 (clone G168-728, BD 
Biosciences), MSH2 (clone FE11, Calbiochem), MSH6 
(clone 44, Cell Marque), and PMS2 (clone MRQ-28, 
Cell Marque). Normal expression was defined as nuclear 
staining within tumor cells, using the nuclei of stromal 
cells and infiltrating lymphocytes as positive internal 
controls.

The determination of TMB status on the Stanford 
samples was made using an NGS-based targeted gene 
panel, the Stanford Actionable Mutation Panel for 
Solid Tumors (order code: STAMPT, additional assay 
details available at: https://stanfordlab.com/content/​
stanfordlab/en/test-details/s/STAMPT.html) and/or 
the FoundationOne CDx panel (Foundation Medicine, 
Cambridge, Massachusetts, USA). Microsatellite and TMB 
status were determined by whole-exome sequencing, and 
MSI was quantified by using MSIsensor at SMC, as previ-
ously described.31 32

Statistical analysis
Receiver operating characteristic curves and the AUROC 
were used to evaluate the performance of the AI models 
in this study. For PFS and OS estimation, the Kaplan-
Meier method was used, and the log-rank test was used 
to assess differences in PFS and OS between groups. HRs 
and 95% CIs were computed using the Cox proportional 
hazards model. Between-group differences in categorical 
variables were compared using Fisher’s exact test, and 
differences in means or medians for continuous variables 
were assessed using the non-parametric Mann-Whitney 
U test. All p values were two-tailed, with a significance 
threshold of p<0.05.

RESULTS
Distribution of the inflamed immune phenotype in a large-
scale ICI-treated cohort
We examined the prevalence of the H&E-based WSI-
level IIP (hereafter simply referred to as the IIP) across 
multiple tumor types and explored its potential as a 
biomarker for guiding ICI treatment planning, using the 
retrospectively-collected FFPE pre-ICI treatment tumor 
WSI from our large, multicenter cohort of ICI-treated 
patients (N=1,806) representing over 27 different solid 
tumor types (online supplemental figure S1 and table 3). 
The clinical and histopathologic characteristics of these 
patients are summarized in table 1 and table 2, respec-
tively. Most samples were collected from the primary 
tumor (62.0%), and the most prevalent tumor type was 
NSCLC (49.7%). 1,502 (83.2%) patients received ICI 
monotherapy (mono) and 304 (16.8%) received an ICI in 
combination with at least one other anti-neoplastic drug 
(ICI combo). Most patients received the ICI as part of 
their first (25.1%) or second line (43.5%) of treatment.

Of the 798 patients with available PD-L1 TPS results, 
the proportions with PD-L1 TPS<1% and PD-L1 TPS≥1% 
were 24.9% and 75.1%, respectively. Among the patients 
with both microsatellite and TMB status available (n=130), 
67.7% had microsatellite stable/low microsatellite insta-
bility (MSS/MSI-L), TMB-low tumors, while 32.3% had 
MSI or TMB-high tumors (cut-off of 10 mutations per 
Mb).

By Lunit SCOPE IO analysis, 636 of the 1,806 patients 
(35.2%) were classified as IIP (online supplemental table 
4). The IIP was highly enriched in patients with nasopha-
ryngeal carcinoma (68.0%), melanoma (56.3%), renal cell 
carcinoma (52.9%), and NSCLC (33.7%) (figure 2). With 
regard to ICI treatment line, 39.4%, 34.2%, and 31.5% 
of patients receiving first-line, second-line, and ≥third-
line treatment were classified as IIP. The IIP proportion 
was 40.7% in TPS≥1% patients and 21.6% in TPS<1% 
patients, respectively. In the primary tumor, lymph node, 
and distant metastatic samples, the IIP proportions were 
35.1%, 41.4%, and 32.2%, respectively. While 33.3% of 
tumors that were MSI and/or TMB-high (≥10 mutations/
Mb) were IIP, a substantial proportion (26.1%) of tumors 
that were both MSS/MSI-L and TMB-low were also IIP 
(online supplemental figure S2A–E).

Association between the inflamed immune phenotype and 
ICI-treatment outcomes across multiple tumor types when 
applying a universal threshold
In the overall cohort (N=1,806), the objective response 
rate (ORR) was significantly higher in IIP than in non-
IIP patients (26.3% vs 15.8%, p<0.001, figure  3A) and 
there was a significant downward trend in the median IS 
with respect to RECIST response groups (p<0.001, online 
supplemental figure S3A). Interestingly, only the IS was 
positively prognostic of response to ICI, but not the IES 
and IDS (online supplemental table 5 and figure S3B). In 
the subset of 798 patients with available PD-L1 TPS results, 
the AUROC for predicting the best overall ICI response 
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Table 1  Clinical characteristics of the multicenter study cohort

All
(N=1,806)

Stanford
(n=688)

SMC
(n=653)

SNUBH
(n=269)

CNUH
(n=183)

Northwestern
(n=13)

Gender, n (%)

 � Female 577 (31.95) 267 (38.81) 153 (23.43) 92 (34.20) 59 (32.24) 6 (46.15)

 � Male 1229 (68.05) 421 (61.19) 500 (76.57) 177 (65.80) 124 (67.76) 7 (53.85)

ECOG PS, n (%)

 � Patients evaluated 1060 0 642 230 183 5

 � 0 60 (5.66) 0 (0.00) 46 (7.17) 10 (4.35) 3 (1.64) 1 (20.0)

 � 1 882 (83.21) 0 (0.00) 518 (80.69) 185 (80.43) 176 (96.17) 3 (60.00)

 � 2 116 (10.94) 0 (0.00) 77 (11.99) 34 (14.78) 4 (2.19) 1 (20.0)

 � 3 2 (0.19) 0 (0.00) 1 (0.15) 1 (0.44) 0 (0.00) 0 (0.00)

ICI treatment, n (%)

 � Pembrolizumab 914 (50.61) 388 (56.39) 326 (49.92) 119 (44.24) 71 (38.80) 10 (76.92)

 � Nivolumab 664 (36.77) 226 (32.85) 264 (40.43) 97 (36.06) 75 (40.98) 2 (15.38)

 � Atezolizumab 188 (10.41) 53 (7.70) 45 (6.89) 53 (19.70) 37 (20.22) 0 (0.00)

 � Avelumab 18 (1.00) 3 (0.44) 15 (2.30) 0 (0.00) 0 (0.00) 0 (0.00)

 � Durvalumab 12 (0.66) 9 (1.31) 2 (0.31) 0 (0.00) 0 (0.00) 1 (7.70)

 � Others (cemiplimab, 
tislelizumab)

10 (0.55) 9 (1.31) 1 (0.15) 0 (0.00) 0 (0.00 0 (0.00)

Treatment line, n (%)

 � Patients evaluated 1376 258 653 269 183 13

 � First-line 345 (25.07) 136 (52.70) 126 (19.30) 27 (10.04) 46 (25.14) 10 (76.92)

 � Second-line 599 (43.53) 103 (39.90) 303 (46.40) 119 (44.24) 72 (39.34) 2 (15.38)

 � ≥Third-line 432 (31.40) 19 (7.40) 224 (34.30) 123 (45.72) 65 (35.52) 1 (7.70)

Regimen, n (%)

 � ICI monotherapy 1502 (83.17) 430 (62.50) 624 (95.56) 261 (97.03) 183 (100.00) 4 (30.77)

 � ICI combination 
therapy

304 (16.83) 258 (37.50) 29 (4.44) 8 (2.97) 0 (0.00) 9 (69.23)

ICI combination therapy regimen, n (%)

 � Patients evaluated 193 148 28 8 0 9

 � IO+IO 36 (18.65) 35 (23.65) 0 (0.00) 0 (0.00) 0 (0.00) 1 (11.11)

 � IO+anti-VEGF 27 (13.99) 22 (14.87) 1 (3.57) 4 (50.00) 0 (0.00) 0 (0.00)

 � IO+chemotherapy 95 (49.22) 57 (38.51) 27 (96.43) 4 (50.00) 0 (0.00) 7 (77.78)

 � IO+PARP inhibitor 7 (3.63) 7 (4.73) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

 � IO+RAF/MEK 
inhibitor

5 (2.59) 5 (3.38) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

 � IO+others* 23 (11.92) 22 (14.86) 0 (0.00) 0 (0.00) 0 (0.00) 1 (11.11)

Specimen type, n (%)

 � Patients evaluated 1780 663 653 269 183 12

 � Surgery 714 (40.11) 368 (55.51) 159 (24.35) 97 (36.06) 90 (49.18) 0 (0.00)

 � Biopsy 1066 (59.89) 295 (44.49) 494 (75.65) 172 (63.94) 93 (50.82) 12 (100.00)

Tissue harvest site, n (%)

 � Patients evaluated 1803 688 653 269 182 11

 � Primary tumor 1118 (62.01) 362 (52.62) 359 (54.98) 250 (92.94) 145 (79.67) 2 (18.18)

 � Lymph node 
metastasis

256 (14.20) 73 (10.61) 169 (25.88) 8 (2.97) 3 (1.65) 3 (27.27)

 � Distant metastasis 429 (23.79) 253 (36.77) 125 (19.14) 11 (4.09) 34 (18.68) 6 (54.55)

Continued
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was 0.60 for the IS and 0.68 for the TPS (online supple-
mental table 6). However, in the subset of these patients 
without NSCLC, the corresponding AUROC was 0.70 for 
the IS and 0.64 for the TPS (online supplemental table 
6). Median PFS was significantly longer in IIP compared 
with non-IIP patients (5.3 vs 3.1 months, HR 0.68, 95% CI 
0.61 to 0.76, p<0.001) (figure 3A). A similar improvement 
in the median OS after ICI treatment was also observed in 
IIP compared with non-IIP patients (25.3 vs 13.6 months, 
HR 0.66, 95% CI 0.57 to 0.75, p<0.001). The same trends 
were observed in the subset of 909 patients without 
NSCLC (online supplemental figure S4), suggesting that 
the results for the overall cohort were not solely driven by 
effects in the NSCLC subset.

On subgroup analysis, the IIP was prognostic of favor-
able PFS, irrespective of ICI regimen (monotherapy HR 
0.68, 95% CI 0.60 to 0.77, p<0.001; combo therapy HR 
0.68, 95% CI 0.51 to 0.91, p=0.008, figure 3B) and PD-L1 
TPS status (positive HR 0.67, 95% CI 0.56 to 0.81, p<0.001; 
negative HR 0.66, 95% CI 0.44 to 0.98, p=0.038, (online 
supplemental figure S5A).

Additionally, the IIP was consistently prognostic of 
favorable response to ICI across various subgroups, 
including: first-line and second-line ICI treatment; the 
timing of FFPE tissue collection relative to the start of ICI 
treatment (less than or ≥1 year before ICI treatment); 
MSS/MSI-L and TMB-low; histologic subtype; specimen 
type (surgical resection or biopsy); and tissue harvest site 
(primary, lymph node or distant metastasis). However, 
the IIP was not significantly associated with favorable 
response to ICIs in the MSI and TMB-high subgroups or 
in patients with squamous cell carcinomas (online supple-
mental figure S5B).

Application of individual (tumor type-specific) thresholds in 
defining the inflamed immune phenotype
Given the variability in the proportions of IIP patients 
within each tumor type when applying a universal 
threshold, we also performed a stratified analysis in 
which an individual threshold, defined as the IS which 
distinguished the top 20% of IS’s from the remaining 

80% within each tumor type, was used to define the IIP. 
Although these individual thresholds varied across the 
cancer types, the overall trends in improved clinical 
outcomes for IIP patients were similar to those observed 
when using the universal threshold. The improvements 
in ORR, PFS, and OS for the IIP compared with non-
IIP patients remained significant after applying indi-
vidual thresholds for each tumor type within both the 
overall cohort and the subset of patients with tumors 
other than NSCLC (online supplemental figure S6A 
and 7). The subgroup analyses showed similar trends, 
although the improvement in PFS for IIP versus non-
IIP patients did not reach statistical significance within 
the subgroup of MSS/MSI-L and TMB-low patients (HR 
0.43, 95% CI 0.17 to 1.07, p=0.062), or in the subgroup 
of patients receiving the ICI as first-line treatment (HR 
0.74, 95% CI 0.53 to 1.04, p=0.078, online supplemental 
figure 6B).

Association between the other immune phenotypes and ICI 
treatment outcomes
We further analyzed clinical outcomes of ICI treatment 
with respect to the IES and IDS, using two thresholds: a 
20% threshold, consistent with the IS threshold for the 
IIP, and a 33.3% threshold for ternary classification of 
the WSI-level IP. In the overall cohort (N=1,806), WSI-
level non-IEP patients exhibited a significant increase in 
median PFS compared with IEP patients (5.0 vs 3.3 months, 
HR 1.26 with a 20% threshold; 4.9 vs 3.0 months, HR 1.29 
with a 33.3% threshold; both p<0.001) (online supple-
mental table 7). Additionally, WSI-level non-IEP patients 
showed higher ORR at both thresholds—25.5% (20% 
threshold) and 24.7% (33.3% threshold)—compared 
with IEP patients (both p<0.001). However, there were no 
significant differences in OS between WSI-level non-IEP 
and IEP patients. With regard to the IDS, median OS was 
significantly increased in WSI-level non-IDP compared 
with IDP patients, only at the 33.3% threshold (18.0 vs 
14.0 months, HR 1.18, p=0.014); no significant differ-
ences were observed for the other outcomes.

All
(N=1,806)

Stanford
(n=688)

SMC
(n=653)

SNUBH
(n=269)

CNUH
(n=183)

Northwestern
(n=13)

Time between tissue harvest date and start of ICI treatment, n (%)

 � Patients evaluated 1796 682 653 266 182 13

 � <365 days 1193 (66.43) 445 (65.25) 450 (68.91) 162 (60.90) 123 (67.58) 13 (100.00)

 � ≥365 days 603 (33.57) 237 (34.75) 203 (31.09) 104 (39.10) 59 (32.42) 0 (0.00)

*Others include miscellaneous targeted therapy drugs and early phase immunotherapy drugs that are designed for targets other than PD-1/
PD-L1 or CTLA-4.
CNUH, Chonnam National University Hospital ; CTLA-4, cytotoxic T-lymphocyte associated antigen 4; ECOG PS, Eastern Cooperative 
Oncology Group Performance Status; ICI, immune checkpoint inhibitor; IO, immuno-oncology; MEK, mitogen-activated protein kinase; PARP, 
poly-ADP ribose polymerase; PD-1, programmed cell death protein 1; PD-L1, programmed cell death ligand 1 ; RAF, rapidly accelerated 
fibrosarcoma kinase; SMC, Samsung Medical Center; SNUBH, Seoul National University Bundang Hospital ; VEGF, vascular endothelial 
growth factor.

Table 1  Continued
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Table 2  Histopathologic characteristics of the multicenter study cohort

All
(N=1806)

Stanford
(n=688)

SMC
(n=653)

SNUBH
(n=269)

CNUH
(n=183)

Northwestern
(n=13)

Pathology, n (%)

 � Adenocarcinoma 678 (37.54) 155 (22.53) 325 (49.77) 129 (47.95) 61 (33.33) 8 (61.54)

 � Squamous cell carcinoma 517 (28.63) 168 (24.42) 270 (41.35) 61 (22.68) 16 (8.74) 2 (15.38)

 � Others 611 (33.83) 365 (53.05) 58 (8.88) 79 (29.37) 106 (57.93) 3 (23.08)

Primary origin, n (%)

 � NSCLC 897 (49.67) 117 (17.01) 535 (81.93) 230 (85.50) 2 (1.09) 13 (100.00)

 � HNSCC 148 (8.19) 101 (14.68) 35 (5.36) 0 (0.00) 12 (6.56) 0 (0.00)

 � Melanoma 144 (7.97) 103 (14.97) 0 (0.00) 0 (0.00) 41 (22.40) 0 (0.00)

 � Urothelial carcinoma 109 (6.04) 69 (10.03) 0 (0.00) 0 (0.00) 40 (21.86) 0 (0.00)

 � Renal cell carcinoma 87 (4.82) 73 (10.61) 0 (0.00) 0 (0.00) 14 (7.65) 0 (0.00)

 � Esophageal carcinoma 78 (4.32) 8 (1.16) 66 (10.11) 0 (0.00) 4 (2.19) 0 (0.00)

 � Biliary tract carcinoma 42 (2.33) 6 (0.87) 0 (0.00) 0 (0.00) 36 (19.67) 0 (0.00)

 � Ovarian carcinoma 37 (2.05) 15 (2.18) 0 (0.00) 22 (8.18) 0 (0.00) 0 (0.00)

 � Non-melanoma skin carcinoma 32 (1.77) 32 (4.65) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

 � Colorectal carcinoma 28 (1.55) 28 (4.07) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

 � Endometrial carcinoma 25 (1.38) 12 (1.74) 0 (0.00) 13 (4.83) 0 (0.00) 0 (0.00)

 � Nasopharyngeal carcinoma 25 (1.38) 13 (1.89) 12 (1.84) 0 (0.00) 0 (0.00) 0 (0.00)

 � Breast carcinoma 24 (1.33) 24 (3.50) 0 (0.0) 0 (0.00) 0 (0.00) 0 (0.00)

 � Hepatocellular carcinoma 20 (1.11) 13 (1.89) 0 (0.0) 0 (0.00) 7 (3.83) 0 (0.00)

 � Salivary gland carcinoma 14 (0.77) 10 (1.45) 4 (0.61) 0 (0.00) 0 (0.00) 0 (0.00)

 � Other tumor types* 96 (5.32) 64 (9.30) 1 (0.15) 4 (1.49) 27 (14.75) 0 (0.00)

PD-L1 22C3 TPS, n (%)

 � Patients evaluated 798 126 463 207 2 0

  �  TPS<1% 199 (24.94) 48 (38.10) 100 (21.60) 51 (24.64) 0 (0.00) 0 (0.00)

  �  TPS≥1% 599 (75.06) 78 (61.90) 363 (78.40) 156 (75.36) 2 (100.00) 0 (0.00)

Microsatellite status and TMB status, n (%)

 � Patients evaluated 130 67 63 0 0 0

  �  MSS/MSI-L and TMB-low 88 (67.69) 38 (56.72) 50 (79.37) 0 (0.00) 0 (0.00) 0 (0.00)

  �  MSI or TMB-high 42 (32.31) 29 (43.28) 13 (20.63) 0 (0.00) 0 (0.00) 0 (0.00)

Microsatellite status†, n (%)

 � Patients evaluated 208 131 77 0 0 0

  �  MSS/MSI-L 192 (92.31) 117 (89.31) 75 (97.40) 0 (0.00) 0 (0.00) 0 (0.00)

  �  MSI 16 (7.69) 14 (10.69) 2 (2.60) 0 (0.00) 0 (0.00) 0 (0.00)

TMB status‡, n (%)

 � Patients evaluated 141 62 79 0 0 0

  �  TMB-low (<10/Mb) 113 (80.14) 45 (72.58) 68 (86.08) 0 (0.00) 0 (0.00) 0 (0.00)

  �  TMB-high (≥10/Mb) 28 (19.86) 17 (27.42) 11 (13.92) 0 (0.00) 0 (0.00) 0 (0.00)

*Other tumor types included gastric carcinoma, carcinoma of unknown primary, uterine cervical carcinoma, pancreatic carcinoma, thyroid carcinoma, 
neuroendocrine carcinoma, anal carcinoma, germ cell tumor, adrenal cortical carcinoma, penile carcinoma, prostate carcinoma, primary peritoneal 
carcinoma, and small intestinal carcinoma.
†Microsatellite status was determined by DNA mismatch repair immunohistochemistry and/or MSI PCR at Stanford, and by whole-exome 
sequencing (WES) at SMC.
‡TMB status was determined by next-generation sequencing-based targeted gene panels (FoundationOne CDx and/or Stanford Actionable Mutation 
Panel for Solid Tumors) at Stanford, and by WES at SMC.
CNUH, Chonnam National University Hospital ; HNSCC, head and neck squamous cell carcinoma; MSI, high microsatellite instability/mismatch repair 
deficiency; MSI-L, low microsatellite instability; MSS, microsatellite stable; NSCLC, non-small cell lung cancer; PD-L1, programmed death-ligand 1; 
SMC, Samsung Medical Center; SNUH, Seoul National University Bundang Hospital ; TMB, tumor mutational burden; TPS, Tumor Proportion Score.
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DISCUSSION
Here, we present an automated deep learning model, 
Lunit SCOPE IO, which classifies the immune phenotype 
of the TME on H&E-stained WSI using TIL distribution 
and density analysis. We demonstrate, for the first time, 
the ability of an AI model which runs on routine H&E-
stained WSI of pre-ICI treatment FFPE tumor samples 
to predict ICI clinical outcomes across a broad range of 
solid tumor types, using a real-world multicenter cohort 
of 1,806 ICI-treated patients. We show that the IIP, as 
defined by either a universal threshold or tumor type-specific 
thresholds, is significantly prognostic of favorable clin-
ical outcomes after ICI treatment. Furthermore, the IIP 
appears to correlate with significantly prolonged PFS, 
regardless of ICI treatment regimen or PD-L1 expression 
level, and is prognostic of favorable PFS in MSS/MSI-L, 
TMB-low patients, a clinically important subgroup in 
whom biomarkers are urgently needed.

Although the utility of the TMB and MSI as universal 
biomarkers of potential ICI response has primarily been 
attributed to their association with increased tumor 
neoantigenicity and heterogeneity of T-cell receptor 
clones,33–35 some criticism has since been directed toward 
their reliability as predictive biomarkers.36 Furthermore, 

even in the TMB-high or MSI setting, which would be 
expected to increase TIL recruitment to CAs, stromal 
interference modulated by the transforming growth 
factor (TGF)-beta or other immunosuppressive pathways 
may result in the spatial exclusion of TILs from these 
CAs (as reflected in the IEP).26 This is supported by the 
observation that, of the patients in our cohort for whom 
both MSI and TMB status were available, 57% of patients 
whose tumors were MSI and TMB-high were also of the 
IEP. In addition, immunoediting, whereby less immuno-
genic tumor cell clones are selected for, may result in a 
decreased antitumor immune response, even in tumors 
with a high mutational burden.37

Immune phenotyping based on TIL analysis avoids 
many of the limitations of the TMB and MSI. Our TIL 
analysis directly assesses the degree of lymphocytic infil-
tration of both CA and CS regions, allowing for the detec-
tion of tumors which might be TMB-high or MSI but 
unresponsive to ICI therapy due to immunoediting or 
the activation of immunosuppressive pathways, as these 
tumors would be classified as IEP (eg, non-IIP) tumors by 
TIL analysis. Furthermore, the H&E-based IIP appears to 
reflect an active antitumor immune response, based on 
the observed correlation between the IS and high IFNG 

Figure 2  Distribution of Inflamed Scores by tumor type. Box plots depict the distribution of Inflamed Scores (IS), categorized 
into IIP (red dots) and non-IIP (blue dots) by primary tumor type in the combined cohort (N=1,806). The thick horizontal lines 
represent the median IS, with boxes delineating the first to third quartiles; the whiskers extend to the minimum and maximum 
points within 1.5 times the IQR. The dashed line represents the universal threshold for the IIP. IIP, inflamed immune phenotype.
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Figure 3  Correlation of clinical outcomes with the immune phenotype across multiple tumor types by the universal threshold. 
(A) Kaplan-Meier survival analysis of PFS (left) and OS (right) after ICI treatment, according to IP (IIP/non-IIP) as defined using 
the universal threshold in the combined cohort (p<0.001). P values were calculated using a two-sided log-rank test. The Cox 
proportional hazards model was used for calculation of HRs and corresponding 95% CIs. (B) Forest plot of PFS after ICI 
treatment according to baseline patient characteristics, with comparison of PFS between IIP and non-IIP subgroups, as defined 
using the universal threshold in the combined cohort. Dots and whiskers represent HRs and 95% CIs, respectively. ICI, immune 
checkpoint inhibitor; IIP, inflamed immune phenotype; IP, immune phenotype; mPFS, median progression-free survival; mOS, 
median overall survival; MSI-L, low microsatellite instability; MSS, microsatellite stable; NSCLC, non-small cell lung cancer; 
ORR, objective response rate; OS, overall survival; PD-L1, programmed cell death ligand 1; PFS, progression-free survival; 
TMB, tumor mutational burden; TPS, Tumor Proportion Score.
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pathway activation in a pan-cancer TCGA data set. H&E-
based immune phenotyping uses pre-existing FFPE H&E 
slides collected during the course of routine clinical care, 
therefore requiring no additional tissue section procure-
ment, and computational TIL assessment will enable 
more objective time-efficient and labor-efficient analysis 
at scale, avoiding interobserver variability and bias in 
interpretation.38–40

The promise of computational TIL analysis of routine 
H&E-stained images has been demonstrated by earlier 
studies showing a correlation between the spatial archi-
tecture of TILs and patient prognosis (1) in non-ICI-
treated patients with cancer41–43 and (2) in small cohorts 
of patients with NSCLC treated with immunotherapy.44 
For example, in a seminal study using over 5,000 H&E 
WSIs from 13 tumor types represented in the TCGA, Saltz 
and colleagues applied deep learning-based binary patch 
classification (wherein each tissue-containing patch in a 
WSI was classified as either positive or negative for TILs) 
to generate a patch-based WSI-level spatial TIL map, 
finding a significant association between various struc-
tural features derived from these TIL maps and OS across 
four TCGA tumor types (breast invasive adenocarcinoma, 
lung adenocarcinoma, prostate adenocarcinoma, and 
cutaneous melanoma).43 Our study builds on all of these 
prior contributions by presenting the first comprehensive 
pan-cancer analysis examining the association between 
AI-enabled TIL-based immune phenotypes, as assessed on 
routine H&E-stained slides representing over 27 different 
solid tumor types, and ICI treatment outcomes. Further-
more, we apply a universal cut-off across multiple tumor 
types to evaluate the feasibility of using the TIL-based 
immunophenotype as a tumor-type agnostic biomarker 
of ICI response, which has not previously been done.

We acknowledge that this study was subject to limitations. 
Given its focus on ICI-treated patients, it is likely that our 
real-world data set was enriched for IIP patients, as many 
of the eligibility requirements for ICI treatment are tied to 
the relative “immunogenicity” of the tumor. Therefore, it 
is possible that our current model might not generalize as 
well when applied to less immunogenic tumor types. Due 
to the retrospective nature of the study, we were unable 
to systematically control for heterogeneity in patient treat-
ment regimens and other potential confounders. For 
instance, although previous reports have not clearly shown 
a significant difference in efficacy between different ICI 
agents,45–47 we could not entirely exclude the possibility 
of confounding of ICI response rates by the specific ICI 
regimen used. In addition, the limited number of patients 
in the current data set for whom ancillary biomarker 
status was available (MSI, PD-L1 and TMB) precluded 
more sophisticated analyses of the relationship between 
these biomarkers and the AI-based immune phenotype. 
However, the results from our analysis of the TCGA data 
set showed that the IS was predictive of a high IFNG expres-
sion signature regardless of TMB status, suggesting that 
the AI-based immune phenotype contributes additional 
predictive and prognostic value independent of the TMB. 

Also, as the current study was focused on the development 
and validation of a readily scalable H&E-based TIL analysis 
model, more granular analyses of individual TIL types and 
activation states based on immunohistochemical and gene 
expression profiling were not performed on the current 
data set. However, in prior analyses, we have found that 
H&E-based TIL distribution and density analysis indirectly 
reflects antitumor lymphocytic activity, as assessed by gene 
expression profile-based cytolytic activity scores and IFNG 
signatures.18 Lastly, our study was subject to sample size 
limitations for some cancer types. For example, we were 
unable to include mesenchymal tumors or other rarer 
tumor types, which will be important to include in future 
studies as larger ICI-treated cohorts become available. In 
addition, it should be noted that, in our study, the direc-
tionality of the association between the IIP and PFS for 
colorectal carcinoma (CRC) was contrary to what might 
typically be expected. We believe that this might have been 
due to the small sample size; among the 28 patients with 
CRC in the study, only one was classified as IIP when we 
applied the universal IS cut-off. This patient belonged to 
the MSI-high group and had the best overall response of 
stable disease with pembrolizumab monotherapy. In the 
remaining 24 non-IIP patients with BOR data available, 
four showed a partial or better response. When the IS cut-
off for IIP was set to 9.1% (resulting in six IIP patients), the 
difference in PFS for the IIP versus non-IIP patients with 
CRC was not found to be statistically significant (p=0.305). 
In future studies, we plan to conduct more comprehensive 
analyses of the relationships between the IS, PD-L1, MSI 
status, and TMB in order to develop a more robust model 
for predicting BOR. We also believe that further investi-
gations in individual tumor types with larger sample sizes 
are strongly warranted to optimize thresholds and to more 
definitively determine whether a universal or tumor type-
specific threshold would be more appropriate.

Nonetheless, in this first effort to examine the correla-
tion between clinical outcomes (including ORR, PFS, 
and OS) in ICI-treated patients and the H&E TIL-
based immune phenotype, as assessed in a large multi-
institutional cohort encompassing multiple diverse tumor 
types, we observed convincing results suggesting that 
the IIP may represent a practical, clinically actionable 
biomarker of favorable clinical outcomes, particularly 
in patients with PD-L1 negative, MSS/MSI-L, and TMB-
low tumors, in whom biomarkers are urgently needed. 
Furthermore, we demonstrate that the application of 
deep learning to H&E-based immune phenotyping can 
provide an automated, readily scalable tool for guiding 
the selection of patients for ICI treatment across a wide 
range of different solid tumors. Further optimization 
and validation of the IIP thresholds used in this study in 
prospective clinical trials represents an important next 
step, which, if successful, might 1-day enable more precise 
selection of patients for ICI therapy.
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