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ABSTRACT
Immunotherapy offers the potential for durable clinical 
benefit but calls into question the association between 
tumor size and outcome that currently forms the basis for 
imaging-guided treatment. Artificial intelligence (AI) and 
radiomics allow for discovery of novel patterns in medical 
images that can increase radiology’s role in management 
of patients with cancer, although methodological issues 
in the literature limit its clinical application. Using 
keywords related to immunotherapy and radiomics, we 
performed a literature review of MEDLINE, CENTRAL, 
and Embase from database inception through February 
2022. We removed all duplicates, non-English language 
reports, abstracts, reviews, editorials, perspectives, case 
reports, book chapters, and non-relevant studies. From 
the remaining articles, the following information was 
extracted: publication information, sample size, primary 
tumor site, imaging modality, primary and secondary 
study objectives, data collection strategy (retrospective 
vs prospective, single center vs multicenter), radiomic 
signature validation strategy, signature performance, 
and metrics for calculation of a Radiomics Quality Score 
(RQS). We identified 351 studies, of which 87 were unique 
reports relevant to our research question. The median (IQR) 
of cohort sizes was 101 (57–180). Primary stated goals 
for radiomics model development were prognostication 
(n=29, 33.3%), treatment response prediction (n=24, 
27.6%), and characterization of tumor phenotype (n=14, 
16.1%) or immune environment (n=13, 14.9%). Most 
studies were retrospective (n=75, 86.2%) and recruited 
patients from a single center (n=57, 65.5%). For studies 
with available information on model testing, most (n=54, 
65.9%) used a validation set or better. Performance 
metrics were generally highest for radiomics signatures 
predicting treatment response or tumor phenotype, as 
opposed to immune environment and overall prognosis. 
Out of a possible maximum of 36 points, the median (IQR) 
of RQS was 12 (10–16). While a rapidly increasing number 
of promising results offer proof of concept that AI and 
radiomics could drive precision medicine approaches for a 
wide range of indications, standardizing the data collection 
as well as optimizing the methodological quality and rigor 
are necessary before these results can be translated into 
clinical practice.

INTRODUCTION
Immunotherapy, a treatment strategy that 
harnesses a patient’s own immune system, can 
improve outcomes in several types of cancer. 
Durable objective responses and improved 
overall survival (OS) have been achieved in 
patients with a wide range of malignancies 
through treatment with intratumoral onco-
lytic virus and chimeric antigen receptor 
T cells, like those against CD19 and B-cell 
maturation antigen, as well as antagonistic 
monoclonal antibodies directed against T-cell 
checkpoint molecules (eg, programmed 
cell death protein-1 (PD-1), programmed 
cell death-ligand 1 (PD-L1), cytotoxic 
T-lymphocytes-associated protein 4, and 
more recently Lymphocyte-activation gene 3 
(LAG-3)).1 However, the unique mechanisms 
of action of these novel treatments has led 
to the emergence of new, atypical response 
patterns including delayed response, pseudo-
progression, and mixed response, all of which 
confound the size-based criteria typically used 
to guide clinical decision-making.2 3 More-
over, these treatments have been associated 
with immune-related adverse events (irAEs) 
and potentially hyperprogression, which can 
be life-threatening and require identification 
and prediction by imaging.4–6 Adapting to 
these novel phenomena demands innovation 
in imaging, a long-standing cornerstone for 
the evaluation of cancer treatment response. 
Artificial intelligence (AI), including deep 
learning and radiomics, offers a poten-
tial solution to the growing complexity of 
response assessment and represents a pivotal 
upgrade to the role of imaging in immuno-
therapy, but many challenges must be over-
come before a bench-to-bedside transition 
can be implemented. The present review 
will first introduce the fundamentals of this 
exciting technology before describing results 
from a literature survey covering ‘AI in 
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immunotherapy’, synthesizing current trends in the field, 
and identifying broad characteristics of immunotherapy-
related radiomics research.

Fundamentals of AI
AI broadly refers to algorithms created to perform 
tasks previously only achievable by human intelligence. 
Machine learning is a subfield of AI which involves algo-
rithms that can modify themselves, or ‘learn’, to produce 
a desired output using the data available. The theory is 
that computer vision can distinguish characteristic and 
distinct phenotypes produced on imaging by underlying 
biological processes.7

Radiomics offers one method to convert images into 
statistically interpretable and quantifiable data.8 Tradi-
tionally, radiomics characterizes images using hand-
crafted quantitative features and mathematical formulas 
which can describe the relationships of image pixels in a 
meaningful way. Domain expertize is required to choose 
these features, such as intensity heterogeneity, edge 
sharpness, and shape irregularity, that describe char-
acteristics known to be associated with disease (eg, the 
pattern of central necrosis in an aggressive malignancy). 
A machine learning algorithm can then learn to adjust 
the importance of each feature or pattern, as well as their 
interactions, in order to combine radiomic features into 
a predictive signature. With the rise of open-source soft-
ware packages to extract radiomic features from images, 
researchers around the world have built signatures for 
diverse clinical applications. These signatures have been 
correlated with distant metastasis, pathological response, 
cancer recurrence after radiation therapy, disease-free 
survival, and even with certain genotypes in one or more 
cancer types.9 10]

Deep learning is another type of machine learning 
that minimizes human input, instead seeking to discover 
patterns algorithmically. Each pixel, or set of pixels, 
serves as an initial data point for an algorithm commonly 
known as a neural network. Through training, the neural 
network learns to progressively combine information to 
automatically discover patterns, starting with simple char-
acteristics such as a line or a circle before proceeding to 
more complex representations. There is much excite-
ment about the potential for deep learning to discover 
previously unknown relationships in data and perform 
almost any complex mapping given the correct training. 
These algorithms have thus far produced remarkable 
advancements in the field of medical imaging and, in 
particular, have achieved impressive results in cancer 
detection, characterization, and monitoring.11 12

Radiomics and deep learning each offer advantages. 
The strength of radiomics lies in its intuitive operation, 
which affords more easily interpretable results. Using 
features engineered by domain experts provides reassur-
ance that the algorithm is learning in the correct direc-
tion and is basing its decision-making on proven imaging 
patterns. Radiomics also typically requires a smaller data 
set to reach the threshold of learning, making it more 

feasible for experiments with sparse data. Lastly, radiomic 
features reflect fundamental properties of the images 
themselves, such as those directly observed by radiol-
ogists (contrast, shape, heterogeneity) as well as novel 
characteristics. These are more easily explained to other 
physicians, a fact that may help alleviate the historical 
apprehension towards this new technology.

On the other hand, deep learning holds a unique 
advantage in that the algorithm is allowed to create its 
own ‘features’, setting the stage for significant scien-
tific progress; In 2012, AlexNet, one of the first modern 
convolutional neural networks (CNN), revolutionized 
the field of image recognition by winning the ImageNet 
competition with a substantial increase in accuracy over 
its competitors.13 Deep learning has no theoretical limit 
to what it can learn and can, with appropriate training 
data, continue to increase its performance, even learning 
to identify unexpected new associations between imaging 
and disease. Incorporating both deep learning and radio-
mics has been shown to produce even further perfor-
mance improvements, potentially due to the analysis of 
previously unseen relationships that are uncovered by 
deep learning.14 15

Challenges of AI
The main barrier to integration of AI technology into 
clinical practice is the need for clinical validation of 
initial proof of concept studies. As preliminary reports are 
frequently prone to overfitting due to data set limitations, 
validation requires appropriate experimental design in 
order to properly assess generalizability.12 Several organi-
zations have published recommendations for appropriate 
validation, which the Food and Drug Administration has 
incorporated in its guidance for Software as a Medical 
Device. It is recommended that validation is performed 
on data with high technical and demographic diversity, 
which may be best provided by multicenter data sets. 
A recent study evaluated design characteristics of AI 
medical image research and found that only 6.0% of the 
over 500 included articles qualified as validation studies. 
They concluded that the literature may not produce 
results that are robust enough for clinical translation.16

Another barrier, especially prominent in radiomics, is 
the issue of reproducibility. Sources of noise and variation 
are introduced at multiple steps of the radiomic pathway. 
Differences in scanner type, reconstruction parameters, 
and acquisition techniques have all been shown to affect 
radiomic feature reproducibility and model perfor-
mance.7 17 18 Until 2020, no standardized definition had 
been published for even the most common imaging 
biomarkers.19 To establish a set of suggested research prac-
tices, such as the proper description of imaging protocols 
and providing open-source data and methods, a Radio-
mics Quality Score (RQS) was developed by Lambin et 
al.20 Studies that achieve higher scores using this metric 
could more easily facilitate translation of radiomic results 
into clinical practice.
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Deep learning poses its own obstacles. These models 
can forgo several of the steps necessary for radiomics, 
including segmentation and feature extraction, and may 
be more robust to noise variability in image acquisition. 
However, deep learning requires a sufficiently large and 
high-quality data set for neural network training. The 
ImageNet challenge in 2012, which first established the 
breakthrough performance of CNNs, had a training data 
set of over 1.2 million images.13 Obtaining similarly large 
training data sets of medical images has historically been 
difficult due to high cost and concerns about patient 
confidentiality. Promising efforts towards resolving this 
problem have been made such as The Cancer Imaging 
Archive and the National Lung Cancer Screening 
Trial.21 22

Other issues with the deep learning strategy include 
a somewhat ‘black box’ decision-making process, unex-
plainable selected features, and a higher risk for over-
fitting when using small training sets. All of these may 
contribute to a lack of confidence from physicians that, in 
turn, impedes implementation in routine clinical settings. 
Current neural networks can have millions of parameters, 
leading to extreme model complexity. Repeat training on 
the same data set may generate networks that have signifi-
cantly different visual appearances, yet still attain a similar 
result. It can be unclear what patterns the algorithm is 
learning and which parts of the image the algorithm is 
attaching importance to. As a result, there is a risk that 
algorithms may be prioritizing noise over true signal, 
prompting a need for extensive validation.23 To overcome 
this challenge, several breakthroughs have been made in 
visualizing neural networks and providing insight into 
the mechanism of their decision-making. SHAP and 
Grad-Cam are some of the technologies used to visualize 
the importance of certain pixels in input images and how 
they are related to the output, effectively allowing users to 
understand what the model ‘sees’ by using a heat map.24 25

MATERIAL AND METHODS
Literature search strategy and study selection
In order to review the published literature relating to the 
use of radiomics in immunotherapy, we queried three 
databases, MEDLINE (PubMed), CENTRAL (Cochrane 
Central Register of Controlled Trials), and Embase, from 
their inception through February 26, 2022. This scoping 
review included the following key search terms: (immu-
notherapy) AND (CT OR MRI OR PET) AND (radiomics 
OR texture OR deep learning OR artificial intelligence). 
One additional relevant study that did not appear in this 
search but that was identified in literature references was 
added.26 Titles and abstracts of the articles were screened 
to determine eligibility and were included if they (1) 
involved immunotherapeutic treatment of human 
cancers or murine models of human cancers and (2) 
employed radiomics with positron emission tomography 
(PET), CT, or MRI imaging (or any combination of the 
three). Case reports, systematic reviews or meta-analyses, 

perspectives, editorials, book chapters, workshop reports, 
and conference abstracts were excluded from the anal-
ysis, as well as duplicate or non-English studies and publi-
cations including only an abstract.

Data extraction
Relevant data were extracted from each eligible publica-
tion using a standardized form recording the following 
information: (1) general publication information (date, 
PubMed reference number (PMID)/ Document Object 
Identifier (doi)), (2) sample size, (3) location of primary 
tumor, (4) imaging modality, (5) primary and secondary 
study objectives, (6) data collection strategy (retrospective 
vs prospective, single center vs multicenter), (7) radiomic 
signature validation strategy, (8) signature performance, 
and (9) metrics for calculation of an RQS.

Sample size
Sample sizes were calculated by addition of each cohort 
utilized in the study, including all training, validation, and 
test sets. Studies were grouped into sample size buckets 
(<50, 50–99, 100–199, 200–299, 300–399, 400–499, 
500–599, 600–699, ≥700) for analysis. The sample size 
0–99 group was split in half for higher resolution in order 
to better distinguish the large number of studies fitting 
this criterion.

Imaging modality
The imaging modality used to generate each study’s radio-
mics signature was identified. This was either MRI, CT, 
(18F)-fluorodeoxyglucose (FDG) PET nuclear imaging 
information alone (PET), a combination of (18F)-FDG 
PET and CT images (PET/CT), or a combination of MRI 
and CT (MRI/CT).

Tumor type
Primary tumor location of the cancer investigated in 
each study was identified. For simplicity and due to low 
numbers of individual studies, reports examining rectal, 
colon, gastric, and esophageal tumors were grouped 
together under ‘gastrointestinal tract’. Those investi-
gating a variety of different cancers with one radiomics 
model (eg, ‘solid tumors’) were categorized as ‘mixed’.

Primary task
For identifying the primary task of each study, we estab-
lished five broad categories: prognosis, treatment 
response, general classification, classification by immune 
environment, and classification by tumor phenotype. 
Measures of ‘prognosis’ were defined as OS, progression-
free survival (time from treatment initiation to clinical 
or radiological disease progression), and durable clinical 
benefit (progression-free survival past a predetermined 
time point, eg, 6 months). ‘Treatment response’ included 
studies utilizing a primary endpoint of disease response as 
defined by Response Evaluation Criteria in Solid Tumors 
(RECIST) V.1.1 criteria. ‘General classification’ was 
comprised of studies performing other categorization-
based tasks (eg, serious sequelae and adverse events from 
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immunotherapy or adjuvant treatment). ‘Immune envi-
ronment’ included reports examining immune cell (eg, 
CD8+, CD4+, CD3, T-helper 1/2, B-cells, natural killer 
cells, among others) infiltration of primary tumors, while 
‘tumor phenotype’ covered studies focused on tumor 
PD-L1 expression or microsatellite instability.

Validation strategy
We examined how each radiomics model was validated. 
In the interest of clarity when describing model valida-
tion, we created the following definitions which were 
subsequently used to classify studies. ‘Cross validation’ 
was listed as the strategy when simple cross validation was 
used without a separate validation set. ‘Validation set’ 
indicated one of two things that: (1) a study’s original 
cohort was split into two distinct groups, the first used to 
train and refine the radiomics signature (the training set) 
and the second kept separate from training in order to be 
used for testing (the validation set) or (2) a training set 
and a validation set were recruited separately, but from 
the same institution using similar criteria (ie, they were 
not part of an aggregate original cohort that was split, 
but they had similar patient distributions and characteris-
tics). The validation set thus acted as an ‘extension’ of the 
training set, drawn from the same or a similar patient base, 
but to which the model had not been previously exposed. 
In a similar fashion, ‘tuning; validation set’ meant that 
a study’s original cohort was split into three groups: a 
training, tuning (for adjustment of model parameters 
after training), and validation set. A test set was identi-
fied when the cohort used to evaluate model perfor-
mance consisted of patients that were independent of the 
training/validation sets, that is, they were drawn from a 
different database/institution/clinical trial, received a 
different type of treatment (chemotherapy vs immuno-
therapy), or were collected prospectively following initial 
training of the radiomics model. Test sets were used by 
studies either directly after training, denoted by ‘test set’, 
or following training and the use of a validation set, which 
we labeled as ‘validation set; test set’. Studies were thus 
classified by their validation strategies as: ‘none’, ‘cross 
validation’, ‘validation set’, ‘tuning; validation set’, ‘test 
set’, or ‘validation set; test set’.

Temporal trend
We grouped studies by individual year of publication, 
except for those published in 2021 and 2022. For plotting 
purposes, these were combined as ‘2021+’ due to the rela-
tively few studies published since the beginning of 2022.

Methodology
Each report was examined for investigational meth-
odology in two domains: how the data was collected 
(retrospectively or prospectively) and where the data 
was collected (single or multiple institutions). If a study 
utilized an external data set (eg, The Cancer Genome 
Atlas Project) in addition to single-center cohort recruit-
ment, the location was classified as ‘multiple institutions’.

Performance
Performance evaluation of radiomic signatures generally 
involves sequential application to each cohort available 
in the study—moving through the training set, valida-
tion set, and test sets, depending on study design—with 
a different performance metric (PM) reported at each 
stage. We extracted PMs from the most robust cohort 
applications reported in each individual study, such that 
metrics were used from the test set whenever present, 
the validation set if one was present but no test set was 
available, and the training set if neither test nor validation 
set was available. The highest reported performance was 
utilized if multiple metrics were reported at a given level 
(ie, the investigators tested their radiomics model on two 
validation sets).

RQS
An RQS was calculated for each eligible study. The articles 
were individually reviewed and data was extracted based 
on adherence to a 16 component scoring system origi-
nally defined by Lambin et al.20 Higher scores indicate 
higher quality studies, and the highest possible score is 36 
points. This system was developed to provide a measure of 
standardization for the assessment of radiomics studies, 
assigning point values for different features of the scien-
tific protocol (eg, points for if multiple segmentation or 
measures against overfitting were performed, if the study 
was prospective, if the model was validated and how, etc). 
The score does not take into account sample size or how 
the model actually performs, but instead represents an 
evaluation of both how rigorous model development is 
and how impactful the study may be to the field. A full 
summary of what features were evaluated, as well as the 
associated point values, is available in online supple-
mental table S1.

Tabulation and analysis
During our review, all eligible studies were recorded using 
Google Sheets (V.2022, Google, USA, 2022). Figures were 
created using Adobe Illustrator (V.2022, Adobe, USA, 
2022).

RESULTS
Identification and selection of studies
Our query of MEDLINE, CENTRAL, and Embase iden-
tified 350 studies reporting on the use of radiomics in 
immunotherapy. Among these, 53 studies were removed 
for being duplicates, 1 for not being in English, and 99 
for only having an abstract available (including sympo-
sium/conference abstracts). The remaining 198 studies 
were screened to remove reviews, perspectives, and edito-
rials (n=68), studies not pertaining to immunotherapy or 
radiomics (n=29), case reports (n=8), workshop reports 
(n=1), book chapters (n=4), and paper corrections 
(n=1). One additional study not identified in the search 
but previously known in the literature was added. Our 
selection process is outlined in figure 1 and yielded a total 
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of 87 studies that were included in the final report. Their 
details are summarized in table 1 and figure 2.

Sample size
The vast majority of studies in this review had total sample 
sizes above 50 patients (n=69, 79.3%), with a mean of 
146 patients. The median (IQR) of cohort sizes was 101 
(57–180) (figure 2A). In studies with validation sets, many 
investigators split the original study cohort into training/
testing divisions utilizing a ratio of at least 2:1, respec-
tively. Although this placed an emphasis on large samples 
for signature development, evaluation of performance 
metrics was limited due to smaller validation cohorts.

Imaging modality
Radiomics was primarily applied to the evaluation of CT 
images in isolation (n=58, 66.7%), MRI alone (n=13, 
14.9%), and PET/CT studies (n=9, 10.3%). There were 
few studies (n=6, 6.9%) building radiomics signatures 
based on PET alone and only one study (1.1%) utilizing 
an MRI/CT combination.

Tumor type
The site of primary malignancy for the studies reviewed 
was: lung (n=42, 48.3%), melanoma (n=9, 10.3%), gastro-
intestinal tract (n=7, 8.0%), pancreas (n=5, 5.7%), brain 
(n=4, 4.6%), bladder (n=4, 4.6%), head and neck (n=3, 
3.4%), liver (n=3, 3.4%), ovary (n=1, 1.1%), breast (n=1, 
1.1%), kidney (n=1, 1.1%), lymphatic system (n=1, 1.1%), 
and blood (study targeting myeloid-derived suppressor 
cells, n=1, 1.1%) (figure  2B). Five studies (5.7%) 
employed mixed primary malignancy sites to develop 
predictive models for solid tumors in general.

Primary task
Radiomic signatures were primarily employed to develop 
predictive models of prognosis (n=29, 33.3%) or treat-
ment response (n=24, 27.6%) (figure 2C). The remaining 
studies focused on classification, describing either tumor 
phenotype (n=14, 16.1%), tumor immune microenviron-
ment (n=13, 14.9%), or other general characteristics of 

the investigated disease (n=7, 8.0%). Secondary objec-
tives were defined in 24 studies (27.6%), most of which 
were prognostic (n=11, 12.6%) or described treatment 
response (n=6, 6.9%).

Validation strategy
Assessment of validation strategy was possible for 82 
studies (94.3%). Of these, the most popular strategy for 
model testing involved the use of a validation set (n=38, 
46.3%). Other reports utilized both a tuning and a valida-
tion set (n=2, 2.4%), an independent test set alone (n=7, 
8.5%), or a validation set followed by an independent 
test (n=7, 8.5%). The remaining studies either did not 
perform validation testing (n=10, 12.2%) or relied on less 
rigorous validation protocols, such as cross-validation on 
training set data alone (n=18, 22.0%).

Of the test sets identified (n=14, 17.0%), more than 
half were collected retrospectively from an external 
institution or database (n=9), while most of the others 
were derived from cohorts at the same institution as the 
training/validation sets but differing in the treatment 
regimen (n=2) or consisting of data collected prospec-
tively after model training (n=2). Only one study (1.2%) 
followed what is considered the most thorough strategy 
for model development, progression through training 
and validation sets followed by performance evaluation 
on a prospective, external cohort. This latter workflow is 
illustrated in online supplemental figure S2.

Temporal trend
The literature search returned 87 relevant articles from 
2018 through late February 2022. It is evident that interest 
in this particular application of radiomics is steadily 
increasing, with the number of published articles rising 
nearly linearly year on year (figure 2E). In fact, just over 
half of the reports detailed herein were published in the 
13 months since January 2021 (n=47, 54.0%). Addition-
ally, no MRI or PET/CT studies were identified before 
2019.

Figure 1  Visualization of our literature survey and study selection.
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Methodology
The data collection strategy for the vast majority of 
studies was retrospective in nature (n=75, 86.2%), with 
only a small percentage using prospective data sets (n=8, 
9.2%) (figure  2F). Four (4.6%) relevant experimental 
studies have been published since 2018, employing 
murine models of human cancers to investigate radiomic 
predictors of serious sequelae, treatment response, or 
prognosis.

The majority of studies used patient cohorts recruited 
from a single institution (n=57, 65.5%) rather than 
multiple institutions (n=21, 24.1%) (figure 2F). Cohort 
origin was not applicable for the four experimental 
studies (4.6%), and could not be identified in five (5.7%) 
other publications.

Performance
A discrete measure of radiomic signature PM was identi-
fied in most studies (n=68, 78.2%) as either an area under 
the receiver operating curve or as a concordance index. 
Nine of these reports described performances of two 
separate models. Performance was either not reported or 
was addressed using a separate metric than those listed 
above (eg, HR) in 19 studies (21.8%).

Most (n=69) radiomics signatures could be placed into 
four broad categories for prediction of the following 
measures: prognosis, treatment response, immune envi-
ronment, and tumor phenotype. The remaining eight 
radiomics models that could not thus be categorized 
involved a variety of classification goals, such as serious 
sequelae or immunotherapy side effect prediction. PMs, 
delineated by predictive aim, are detailed in online 
supplemental table S3. Within each category, we also 
clarified how PMs were validated, that is, whether only 
cross-validation on the training set was performed or if 
a validation set/independent test set was employed after 
model training. Signatures describing prognosis (n=26) 
had a mean PM of 0.787, with a median (IQR) of 0.771 
(0.711–0.875). For signatures of treatment response 
(n=20), mean performance was higher at 0.808 with a 
median (IQR) of 0.810 (0.785–0.860). PMs reported on 
the validation sets within this category were higher than 
those for the training and independent test sets, although 
this could be an artifact from low numbers of the latter 
two study types. When describing immune environment 
(n=10) and tumor phenotype (n=13), models had PMs 
with means/medians (IQRs) of 0.787/0.760 (0.727–
0.848) and 0.816/0.834 (0.790–0.848), respectively. The 
highest overall mean performances were seen in the 
radiomics signatures for predicting treatment response 
and describing tumor phenotype, with a larger number 
of reports contributing to the former.

RQS
We computed an RQS for the studies identified in our 
survey based on the metrics detailed in online supple-
mental table S1. Distribution of radiomics scores as well 
as a visualization of study adherence to the different S
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components of the RQS can be seen in figure 3. The four 
experimental studies were excluded from this analysis, 
and an additional four articles could not be assessed due 
to incomplete data. Out of a possible total score of 36 
points, the median (IQR) RQS observed in the 79 studies 
reviewed was 12 (10–16). The vast majority of studies 
(n=55, 63.2%) fell within the range of 11–20, while only 
one study (1.3%) achieved a score greater than or equal 
to 25. The RQS categories with the highest adherence, 
that is, those for which over 75% of studies had at least 
one point, were image protocol quality (n=63, 79.7%), 
feature reduction (n=75, 94.9%), biological correlates 
(n=66, 83.5%), discrimination statistics (n=73, 92.4%), 
and comparison to a gold standard method (n=69, 
87.3%). Most studies did not report calibration statistics 
(n=64, 81.0%) or clinical utility in the form of a decision 
curve (n=63, 79.7%) and most did not have or did not use 
open source data (n=62, 78.5%) or prospective cohorts 
(n=68, 86.1%). Notably, only one (1.3%) article reported 
a phantom study and none performed cost-analysis 
including a report of quality-adjusted life-years.

DISCUSSION
Integration of AI to guide the care of patients with a diag-
nosis of cancer treated with immunotherapy holds great 
promise. Per our review, several studies have successfully 
trained models to perform specific tasks for guidance in 
patient management, including prediction of response to 
treatment (n=24, 27.6%) or prognosis (eg, survival, remis-
sion time) following immunotherapy (n=29, 33.3%). 
However, the field is undoubtedly still in its infancy. The 
earliest of the 87 studies which met our search criteria was 
published in 2018. The median cohort size of 101 suggests 
a high risk of overfitted results, further demonstrated by 
the fact that only 54 studies (out of 82 for which data was 
available, 65.8%) included a validation or independent 
testing data set. Out of a theoretical maximum RQS of 
36 points, the median (IQR) was 12 (10–16), indicating a 
need for the field to adopt more robust methodology for 
radiomics model development and application.20

Moving forward, establishing a set of best practices for 
AI model development will involve addressing a few key 
points. Primarily, there is a need to precisely define the 

Figure 2  General overview of study characteristics for reports involving radiomics and immunotherapy. (A) Aggregate 
number of patients included in the study for all purposes; (B) Primary tumor site of the disease investigated; (C) Stated task 
of the research: prognosis (overall survival, progression-free survival, durable clinical benefit), treatment response (defined by 
Response Evaluation Criteria in Solid Tumors (RECIST v1.1), tumor phenotype (programmed cell death-ligand 1 expression, 
microsatellite instability), immune environment (tumor immune cell infiltration), general classification (serious sequelae and 
adverse events from immunotherapy or adjuvant treatment); (D) Strategy for radiomics model performance validation; (E) Year of 
publication; (F) Data collection strategy and data source. GI, gastrointestinal.
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outcomes to be predicted by AI. For immunotherapy 
specifically, reference standards for treatment response 
and disease progression will need to account for atypical 
patterns of response including pseudoprogression and 
hyperprogression. Additionally, in order to direct the 
focus of future model development, the most interesting 
and predictive imaging biomarkers, such as those involved 
in radiogenomics and radiotranscriptomics (eg, PD-1/
PD-L1 expression, tumor mutational burden, etc), must 
be identified and described using standardized defini-
tions. With these addressed, a new gold-standard strategy 
for model development should be recognized that involves 
adherence to a set of systematic processes or measures, 
as described previously.9 20 To avoid overfitting, studies 
should divide initial patient cohorts into two groups: one 
for training and the second for model validation on a 
patient population similar to that of the training set but 

to which the model has not been previously exposed. The 
models must then be externally validated on multicenter 
data and prospective cohorts in order to best simulate 
real-world environments.16 Lastly, model development will 
need to implement stress testing to address the issue of 
underspecification, or failing to capture the inner logic of 
an underlying system due to confounding factors in data 
distributions.27 To ensure broad generalizability, these 
stress tests should become standard practice, just as crash 
tests are fundamental to the automotive industry.

Our survey revealed a dearth of truly robust cohort 
testing, limiting the widespread applicability of reported 
models and overall indicating that the use of AI for 
medical imaging in immunotherapy remains in a prelimi-
nary stage. The level of evidence and standardization will 
need to progress before the technology can be applied to 
clinical practice.

Figure 3  Top: (Left) Histogram of radiomics quality scores assigned to the 87 studies included in this review. Scores have been 
placed in bins of five with the exception of the highest bracket, which ranges from 30 (inclusive) to the highest theoretical score 
of 36. (Right) Breakdown of individual radiomics score components in the studies surveyed. The red bar indicates the proportion 
of studies (out of 79 with scorable data) that did not receive a point in that category. The green bar overall represents the portion 
of studies which received at least a point in the category, with darker shades indicating serially increasing point values (eg, 
validation: lightest shade of green is one point with successively darker shades indicating additional points for more robust 
validation methods, as defined in the methods section and online supplemental table S1). Bottom: Comparison of key studies 
with a radiomics quality score >15 (n=23, 26.4%). The articles are organized by sample size (x-axis) and radiomics quality score 
(y-axis) and are represented by icons denoting studied sample size and reported performance metrics (area under the receiver 
operating curve, concordance index, etc). Studies without formal validation or test sets are demarcated by a black outline.
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Notable studies and biomarkers
Notwithstanding the challenges with validation previ-
ously discussed, AI has so far achieved some success in 
the baseline assessment of tumors prior to therapy. He et 
al utilized deep learning features to distinguish the level 
of tumor mutational burden, which resulted in groups 
with distinctly different overall and progression-free 
survival after treatment with immune checkpoint inhib-
itors.28 Prior evidence also demonstrated the correlation 
between tumor infiltration by immune CD8+ cells and 
response to immunotherapy, especially with treatment 
specifically targeting anti-PD-1 and anti-PD-L1.29 Sepa-
rately, a CT-based radiomic signature was created to 
predict the tumor immune environment and discriminate 
between tumor-inflamed and tumor-desert phenotypes.30 
High baseline scores on this signature (and therefore 
greater CD8+ T cell infiltration) were associated with a 
higher chance of achieving objective response at 3 and 
6 months as well as improved OS. This same radiomics 
signature was subsequently used to assess response after 
stereotactic body radiation therapy and pembrolizumab 
in metastatic treatment-refractory adult solid tumors, 
once again demonstrating a significant association with 
progression free survival.31 Additionally, a deep learning 
network incorporating multimodal data sources was 
trained on the multiomics of imaging, laboratory, and 
clinical data of patients with non-small cell lung cancer 
(NSCLC) who received anti-PD-1/PD-L1 agents.32 This 
model was capable of distinguishing responders from 
non-responders and predicting survival benefit to therapy 
in certain patients with stable disease.

Post-immunotherapy assessment is another promising 
application of AI. In a retrospective analysis of the Check-
Mate trials, a radiomics signature was developed that 
performed quantitative analysis of early tumor changes 
between baseline and first on-treatment assessment.26 
It was found that treatment insensitivity and shorter OS 
were associated with an exponential increase in radiomic 
features assessing tumor volume, invasion of tumor 
boundaries, and tumor spatial heterogeneity. Using a 
similar concept in metastatic colorectal cancer treated 
with chemotherapy and other targeted therapies, the 
group demonstrated improved performance in prog-
nostic classification over standard RECIST V.1.1 criteria.33 
Another radiomics signature applied to metastatic mela-
noma also outperformed RECIST V.1.1 in estimating 
OS and was better able to distinguish between pseudo-
progression and true progression at 3 months.34 Lastly, 
a neural network identified morphological changes on 
pretreatment and post-treatment chest CTs to predict 
1-year survival in patients with NSCLC who received 
nivolumab.35 Here, the use of visualization heat mapping 
revealed the importance of gross morphologic changes, 
including those in nodal features, lung and bone metas-
tases, pleural effusions, atelectasis, and consolidations.

AI has also found success in metabolic imaging. Certain 
PET features were found to be associated with OS and 
disease progression, predicting response of patients with 

NSCLC to immunotherapy.36 37 PET, CT, and PET/CT 
fusion features were extracted from patient with pretreat-
ment NSCLC images to create a multiparametric radio-
mics signature that was able to accurately identify durable 
clinical benefit resulting from checkpoint blockade 
immunotherapy.38 These results were subsequently vali-
dated in both retrospective and prospective test cohorts. 
The same group then applied deep learning techniques 
to achieve similar results in the same data sets.39

While immunotherapy is a cornerstone of treatment 
in patients with advanced cancer, irAEs due to unbridled 
T-cell activation have emerged as a concern requiring 
specific detection and support. Several studies have 
applied radiomics to predict toxicity and irAE related 
to immunotherapy. One report utilized AI to distin-
guish between pituitary metastasis and hypophysitis by 
incorporating both MRI imaging and clinical features.5 
In another study, PET/CT radiomics predicted develop-
ment of severe irAEs in patients with NSCLC treated with 
immunotherapy.40 This model was validated on a prospec-
tive cohort in addition to standard training and testing 
data sets.

Finally, the application of AI has extended beyond 
radiographic and functional imaging alone towards the 
incorporation of histopathological slides. This approach 
has been studied for predicting diagnosis and prognosis, 
forecasting response to immune checkpoint blockers, and 
characterizing the tumor immune microenvironment 
through determination of genomic class, but is beyond 
the scope of this study.41–43 For further details, refer to 
several reviews published on these topics.41 44

Clinical application
The adoption of AI in clinical practice will require devel-
oping transparent machine-learning models in which 
the underlying logic of the learning process can be 
revealed to and understood by humans. Knowing how 
the model arrived at prognostic and predictive outputs 
allows rational application to real-world clinical scenarios. 
On review, we observed that the majority of relevant 
radiomics research using CT, MRI, and PET rely on the 
combination of a limited subset of imaging biomarkers 
that capture specific macroscopic, anatomical, and func-
tional characteristics. The macroscopic features in partic-
ular are of great clinical use for assessing prognosis. For 
example, overall tumor burden and organ-specific local-
ization of metastatic disease were found to be associated 
with survival, with liver metastases indicating the shortest 
survival and greatest acceleration in tumor growth.45 
Additionally, skeletal muscle index—a surrogate marker 
of sarcopenia that is derived from the analysis of muscle 
surface area on a single CT scan slice at the level of the 
lumbar vertebra L3—was significantly associated with OS 
in patients after initiation of immunotherapy.45 Among 
more functional classifiers, increased bone marrow 
glucose metabolism was significantly and positively asso-
ciated with transcriptomic profiles of regulatory T-cells, 
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and spleen metabolism was associated with immunosup-
pressive environment and poor outcome.46 47

The goal of the RQS discussed in this review is to 
provide some measure of standardization for the assess-
ment of studies in the field. The scoring system considers 
robustness in scientific protocol, including corrections 
for overfitting, consideration of temporal variations, cut-
off analyses, etc, as well as an evaluation of the relevance 
of results in real-world settings, including identification 
of biological correlates, comparison to gold-standard 
methods, extent of validation, etc. The RQS thus assesses 
many of the features required to instill confidence in the 
technology for clinical practice, allowing physicians to 
transparently view how a biomarker was selected, how and 
on what cohorts the algorithm was validated, and overall 
how repeatable the entire sequence of testing would 
be given a different environment. However, the score 
overlooks some study components that may be useful 
in defining generalizability and in the field of oncology. 
Ideally, a more comprehensive score could incorporate 
the total number of lesions included in the model as well as 
how the actual lesions were segmented (two-dimensional 
vs three-dimensional). Additionally, quantification of 
how the examined immunotherapies were documented 
and identification of possible confounding variables (eg, 
local vs radiation therapy, intratumoral immunotherapy) 
would elucidate the applicability of a particular radiomic 
signature to other tumor types and therapies. Finally, 
inter-evaluator reproducibility may be a concern for RQS 
assignment, as demonstrated by Sanduleanu et al.48 More 
clear descriptions of individual score components might 
help the next iteration reduce the role of subjective eval-
uation in the RQS.

CONCLUSION
The results for AI application to medical imaging of 
patients on immunotherapy are promising but prelim-
inary. We can envision a future in which AI-derived 
clinical decision support algorithms assist clinicians in 
distinguishing between the myriad of immune response 
patterns to achieve earlier and better identification of 
responders, non-responders, and those likely to develop 
adverse events. However, routine clinical implementation 
will require further evaluation, as the current evidence is 
still lacking in external validation and evidence of gener-
alizability. Once these challenges of AI implementation 
have been overcome, three areas of application offer 
potentially transformative outcomes. First, there will be 
an opportunity to better define the diagnosis and char-
acter of a patient’s cancer with the help of AI to analyze 
pathology slides, blood biomarkers, and radiologic 
images. Paired with its ever improving predictive value 
through data accumulation, this deployment of AI will 
enable increased personalization of therapeutic strate-
gies. Second, by using AI tools at baseline and throughout 
treatment, clinicians will have the opportunity to dynam-
ically adapt their treatments earlier and more reliably 

than is currently possible, reacting to disease evolution at 
the first sign of change. Last but not least, AI will provide 
the field of immuno-oncology with new tools for deci-
phering the tumor immune environment by recognizing 
patterns on medical images that are associated with thera-
peutically actionable pathways and subsequently guiding 
theranostic approaches.
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